Lignocellulosic biomass fractionation with the use of deep natural eutectic solvents

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.28080

Keywords:

Biomass; Fractionation; NADES.

Abstract

Brazil has a privileged position as a leader in the integral use of vegetable biomass because it has the largest biodiversity on the planet. Adding value to a refinery is associated with the treatment and disaggregation of the biomass components. There are processes applied to biomass fractionation to remove or break the layers of lignin and hemicellulose, which allows enzymes to access cellulose more easily. In view of this a great diversity of technological routes can be used, and alternative techniques that have been developed such as the use of the natural deep eutectic solvent (NADES). Thus, the objective of the present work was to perform the fractionation of the bark biomass from E. urograndis species into two fractions: cellulose rich fraction (CRF) and lignin rich fraction (LRF) using NADES. In this process three conditions were applied for biomass fractionation: conventional heating at 100ºC, microwave radiation with power of 600W and 1000 W, and room temperature at 25ºC. The percentages obtained through conventional heating were 72,25% of CRF, 27,75% of LRF; 72,54% of CRF with microwave radiation at a power of 1000W, 27,46% of LRF. The techniques used for characterization of CRF were: Fourier transformed infrared (FTIR) spectroscopy and X-ray diffractometry (XRD) for crystallinity analysis and scanning electron microscopy (SEM). For characterization of LRF the techniques were used: UV-vis and FTIR spectroscopy. The use of NADES a low cost, sustainable organic solvent combined with microwave radiation proved to be efficient for biomass fractionation.

References

Arafat, S., Kumar, N., Wasiuddin, M. N., Owhe O. E., Lynam, O. J. (2019). Sustainable lignin to enhance asphalt binder oxidative aging properties and mix properties. Journal of Cleaner Production, 217, 456-468. https://doi.org/10.1016/j.jclepro.2019.01.238

Brienzo, M., Tyhoda, L., Benjamin, Y., & Görgens, J. (2015). Relationship between physicochemical properties and enzymatic hydrolysis of sugarcane bagasse varieties for bioethanol production. New Biotechnology, 32(2), 253-262. https://doi.org/10.1016/j.nbt.2014.12.007

Chen, H. (2014). Chemical composition and structure of natural lignocellulose. In: Biotechnology of Lignocellulose (pp. 25-71). Springer, Dordrecht. http://doi.org/10.1007/978-94-007-6898-7_2

Chen, Z. & Wan, C. (2018). Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresource Technology, 250, 532-537. https://doi.org/10.1016/j.biortech.2017.11.066

Dai, Y., Witkamp, G. J., Verpoorte, R., & Choi, Y. H. (2015). Tailoring properties of natural deep eutectic solvents with water to facilitate their applications Food Chemistry, 187, 14-19. https://doi.org/10.1016/j.foodchem.2015.03.123

Dunn, A. L., Leitch, D. C., Journet, M., Martin, M., Tabet, E. A., Curtis, N. R., … & Liu, P. (2019). Selective continuous flow iodination guided by direct spectroscopic observation of equilibrating aryl lithium regioisomers, Organometallics. 38(1), 129-137. https://doi.org/10.1021/acs.organomet.8b00538

Hou, X. D., Feng, G. J., Ye, M., Huang, C. M., & Zhang, Y., (2017). Significantly enhanced enzymatic hydrolysis of rice straw via high-performance two-stage deep eutectic solvent synergistic pretreatment. Bioresource Technology. 238, 139-146. https://doi.org/10.1016/j.biortech.2017.04.027

Huang, H., Yuan, X., Zeng, G., Wang, J., Li, H., Zhou, C., & Chen, L. (2011). Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol. Fuel Processing Technology, 92(1), 147-153. http://dx.doi.org/10.1016%2Fj.fuproc.2010.09.018

Karimi, K. & Taherzadeh, M. J. (2016). A critical review of analytical methods in the pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresource Technology, 200, 1008-1018. https://doi.org/10.1016/j.biortech.2015.11.022

Kumar, A. K., Parikh, B. S., Shah, E., Liu, L. Z., & Cotta, M. A. (2016). Cellulosic ethanol production from green solvent-pretreated rice straw. Biocatalysis and Agricultural Biotechnology, 7, 14-23. https://doi.org/10.1016/j.bcab.2016.04.008

Liu, C., & Wyman, C. E. (2004). The effect of flow rate of very dilute sulfuric acid on xylan, lignin, and total mass removal from corn stover. Industrial & Engineering Chemistry Research, 43(11), 2781-2788. https://doi.org/10.1021/IE030754X

Liu, Y., Chen, W., Xia, Q., Guo, B., Wang, Q., Liu, S., & Yu, H. (2017). Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent, ChemSusChem, 10(8), 1692-1700. https://doi.org/10.1002/cssc.201601795

Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis, Applied Biochemistry and. Biotechnology, 162(7), 1872-1880. https://doi.org/10.1007/s12010-010-8965-5

Mika, L. T., Cséfalvay, E., & Németh, A. (2018). Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability Chemical Reviews, 118(2), 505-613. https://doi.org/10.1021/acs.chemrev.7b00395

Mood, S. H., Golfeshan, A. H., Tabatabaei, M., Jouzani, G. S., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77-93. https://doi.org/10.1016/j.rser.2013.06.033

Nelson, M. L., & O'Connor, R. T. (1964). Relationship of certain infrared bands to cellulose crystallinity and crystal network type. Part II. A new infrared ratio for estimating crystallinity in celluloses I and II. Journal of Applied Polymer Science, 8(3), 1325-1341. https://doi.org/10.1002/app.1964.070080323

Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Kim, H. Y., Chung, Y. S., & Youk, J. H. (2005). Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research, 340(15), 2376-2391. https://doi.org/10.1016/j.carres.2005.08.007

Pinto, M. C. E. 2018. Biocarvão proveniente de resíduo de cenoura como adsorvente de fósforo em solução aquosa e reuso na agricultura (Doctoral thesis, Universidade Federal de Viçosa, Brasil). Texto Completo. https://locus.ufv.br//handle/123456789/22215

Sá, V. A., & Bianchi, M. (2015). Métodos de pré-tratamentos da biomassa lignocelulósica para produção de bioetanol. II Congresso Brasileiro de Ciência e Tecnologia da Madeira, Belo Horizonte-MG, Brasil. http://sbctem.org.br/pt/anais/2-pages/36-anais-2

Segal, L. G. J. M. A., Creely, J. J., Martin Jr., A. E., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Textile Research Journal, 29 (10), 786-794. https://doi.org/10.1177/004051755902901003

Singh, J. K., Chaurasia, B. Dubey, A., Faneite Noguera, A. M., Gupta, A., Kothari, R., & Abd Allah, EF (2020). Biological characterization and instrumental analytical comparison of two biorefining pretreatments for Water Hyacinth (Eichhornia crassipes) biomass hydrolysis. Sustainability, 13(1), 245. https://doi.org/10.3390/su13010245

Skulcova, A., Majova, V., Kohutova, M., Grosik, M., Sima, J., & Jablonsky, M. (2017). UV/Vis spectrometry as a quantify tools for lignin solubilized in deep eutectic solvents. BioResources, 12(3), 6713-6722. https://doi.org/10.15376/biores.12.3.6713-6722

Trajano, H. L., & Wyman, C. E. (2013). Fundamentals of pretreatment of biomass at low pH. In C. E. Wyman (Ed.), Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals (pp. 103-128). Willey Online Library. https://doi.org/10.1002/9780470975831.ch6

Trugilho, P. F., Mori, F. A., Lima, J. T., & Cardoso, D. P. (2003). Tannin content determination in the bark of Eucalyptus spp. Cerne, 9(2), 246-254. https://cerne.ufla.br/site/index.php/CERNE/article/view/562

Downloads

Published

31/03/2022

How to Cite

ROMÃO, L. T. G.; MARCIONÍLIO, S. M. L. O.; ROMÃO, T. C.; OLIVEIRA, M. S. .; CASTRO, C. F. de S. . Lignocellulosic biomass fractionation with the use of deep natural eutectic solvents. Research, Society and Development, [S. l.], v. 11, n. 5, p. e11211528080, 2022. DOI: 10.33448/rsd-v11i5.28080. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28080. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences