Study of cold plasma technology using the VOSviewer software
DOI:
https://doi.org/10.33448/rsd-v11i5.28107Keywords:
Food; Foodborne diseases; Bacterial adhesion; Biofilms; Microbiological safety; Atmospheric cold plasma.Abstract
One of the biggest challenges for food industry is to offer microbiologically safe and nutritious products to consumers. Foodborne diseases are considered a recurring public health problem, in addition to causing economic impacts for industries. Pathogenic bacteria can be introduced into foods during several steps along the production chain. In this context, microbial biofilms stand out as sources of contamination of food and processing surfaces. These biofilms form communities resistant to conventional chemical sanitizers. Thus, the demand for new alternatives for surface decontamination is evident, giving rise to interest in the application of cold plasma. This review aimed a systematic work of the literature on the use of cold plasma, using the Science Direct database, with the keywords cold plasma and biofilms. The selected articles were analyzed in Vosviewer software. After interpreting density maps, it was noticed that the most published topics related to cold plasma were food safety, food preservation and plasma. It was found that the cold plasma is a new approach, for which promising results have been observed for the microbiological safety of foods, being a viable alternative for decontamination of surfaces and foods, as well as for the reduction of microbial adhesion and formation of biofilms on food and processing surfaces. However, further studies are needed for validation and industrial commercialization and on its effects on sensory characteristics of foods subjected to this treatment.
References
Abdallah, M., Khelissa, O., Ibrahim, A., Benoliel, C., Heliot, L., Dhulster, P., et al. (2015). Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants. Int. J. Food Microbiol. 214, 38–47. 10.1016/j.ijfoodmicro.2015.07.022
Aguiar, M. M., Almeida, G. M. de, Camargo Filho, W. L. de, Rosário, D. K. A. do, Araújo, L. A., & Naves, E. A. A. (2021). Alta pressão hidrostática, campos elétricos pulsados e plasma frio na cadeia produtiva de alimentos: Princípios e aplicabilidade industrial. Research, Society and Development, 10(2), e50310212670. 10.33448/rsd-v10i2.12670
Aviat, F., Le, I., Federighi, M., & Montibus, M. (2020). Comparative study of microbiological transfer from four materials used in direct contact with apples. International Journal of Food Microbiology, 333, 108780. doi.org/10.1016/j.ijfoodmicro.2020.108780
Bahrami, A., Baboli, Z. M., Schimmel, K., Jafari, S. M., Williams, L. (2020). Eficiência de novas tecnologias de processamento para o controle de Listeria monocytogenes em produtos alimentícios. Tendências em Ciência e Tecnologia de Alimentos, 96, 61-78. doi.org/10.1016/j.tifs.2019.12.009
Bintsis, T. (2018). Microbial pollution and food safety. AIMS Microbiology, 4(3), 377–396. 10.3934/microbiol.2018.3.377
Boletim Epidemiológico 32. Secretaria de Vigilância em Saúde. Ministério da Saúde. Informe sobre surtos notificados de doenças transmitidas por água e alimentos – Brasil, 2016-2019. v. 51, 2020.
Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A., & Raposo, A. (2021). Microbial Biofilms in the Food Industry—A Comprehensive Review. International Journal of Environmental Research and Public Health, 18(4), 2014. 10.3390/ijerph18042014
Chen, Y.-Q., Cheng, J.-H., & Sun, D.-W. (2019). Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances. Critical Reviews in Food Science and Nutrition, 60(16), 2676–2690. 10.1080/10408398.2019.1654429
Choi, S., Puligundla, P., & Mok, C. (2015). Corona discharge plasma jet for inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on inoculated pork and its impact on meat quality attributes. Annals of Microbiology, 66(2), 685–694. 10.1007/s13213-015-1147-5
Colagiorgi, A., Bruini, I., Di Ciccio, P. A., Zanardi, E., Ghidini, S., and Ianieri, A. (2017). Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens 6:E41. 10.3390/pathogens6030041
DeFlorio, W., Liu, S., White, A. R., Taylor, T. M., Cisneros‐Zevallos, L., Min, Y., & Scholar, E. M. A. (2021). Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross‐contamination of food contact surfaces by bacteria. Comprehensive Reviews in Food Science and Food Safety, 20(3), 3093–3134. 10.1111/1541-4337.12750
Devi, Y., Thirumdas, R., Sarangapani, C., Deshmukh, R. R., & Annapure, U. S. (2017). Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control, 77, 187-191. 10.1016/j.foodcont.2017.02.019
Devleesschauwer, B., Haagsma, J. A., Mangen, M.-J. J., Lake, R. J., & Havelaar, A. H. (2018). The Global Burden of Foodborne Disease. Food Safety Economics, 107–122. 10.1007/978-3-319-92138-9_7
Fernandes, M. da S., Fujimoto, G., de Souza, L. P., Kabuki, D. Y., da Silva, M. J., & Kuaye, A. Y. (2015). Dissemination of Enterococcus faecalis and Enterococcus faeciumin a Ricotta Processing Plant and Evaluation of Pathogenic and Antibiotic Resistance Profiles. Journal of Food Science, 80(4), M765–M775. 10.1111/1750-3841.12824
Hertwig, C., Meneses, N., & Mathys, A. (2018). Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends in Food Science & Technology, 77, 131–142. 10.1016/j.tifs.2018.05.011
Jayasena, D. D., Kim, H. J., Yong, H. I., Park, S., Kim, K., Choe, W., & Jo, C. (2015). Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiology, 46, 51–57. 10.1016/j.fm.2014.07.009
Han, L., Patil, S., Boehm, D., Milosavljević, V., Cullen, P. J., & Bourke, P. (2016). Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 82(2), 450–458. 10.1128/aem.02660-15
Handorf, O., Pauker, V. I., Weihe, T., Schnabel, U., Freund, E., Bekeschus, S., Ehlbeck, J. (2020). Plasma-treated water affects Listeria monocytogenes vitality and biofilm formation. 10.21203/rs.3.rs-31328/v1
Karam, L., Casetta, M., Chihib, N. E., Bentiss, F., Maschke, U., & Jama, C. (2016). Optimization of cold nitrogen plasma surface modification process for setting up antimicrobial low density polyethylene films. Journal of the Taiwan Institute of Chemical Engineers, 64, 299–305. 10.1016/j.jtice.2016.04.018
Katsigiannis, A. S., Bayliss, D. L., & Walsh, J. L. (2021). Cold plasma decontamination of stainless steel food processing surfaces assessed using an industrial disinfection protocol. Food Control, 121, 107543. ISSN 0956-7135. doi.org/10.1016/j.foodcont.2020.107543.
Kim, J.-S., Lee, E.-J., Choi, E. H., & Kim, Y.-J. (2014). Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment. Innovative Food Science & Emerging Technologies, 22, 124–130. 10.1016/j.ifset.2013.12.012
Kim, J. Y., Song, M. G., Jeon, E. B., Kim, J. S., Lee, J. S., Choi, E. H., … Park, S. Y. (2021). Antibacterial effects of non-thermal dielectric barrier discharge plasma against Escherichia coli and Vibrio parahaemolyticus on the surface of wooden chopping board. Innovative Food Science & Emerging Technologies, 73, 102784. 10.1016/j.ifset.2021.102784
Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X., Sites, J., Boyd, G., & Chen, H. (2015). Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology, 46, 479–484. 10.1016/j.fm.2014.09.010
Laroussi, M., & Leipold, F. (2004). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 233(1-3), 81–86. 10.1016/j.ijms.2003.11.016
Li, X., & Farid, M. (2016). A review on recent development in non-conventional food sterilization technologies. Journal of Food Engineering, 182, 33–45. 10.1016/j.jfoodeng.2016.02.026
Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., & Ding, T. (2017). Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control, 75, 83–91. 10.1016/j.foodcont.2016.12.021
Mai-Prochnow, A., Clauson, M., Hong, J., & Murphy, A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 6(1). 10.1038/srep38610
Mandal, R., Singh, A., & Pratap Singh, A. (2018). Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science & Technology, 80, 93–103. 10.1016/j.tifs.2018.07.014
Min, S. C., Roh, S. H., Niemira, B. A., Sites, J. E., Boyd, G., & Lacombe, A. (2016). Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. International Journal of Food Microbiology, 237, 114–120. 10.1016/j.ijfoodmicro.2016.08.025
Misra, N. N., Moiseev, T., Patil, S., Pankaj, S. K., Bourke, P., Mosnier, J. P., Cullen, P. J. (2014). Cold Plasma in Modified Atmospheres for Post-harvest Treatment of Strawberries. Food and Bioprocess Technology, 7(10), 3045–3054. 10.1007/s11947-014-1356-0
Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science and Technology, 55, 39-47. 10.1016/j.tifs.2016.07.001
Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews, 3(3-4), 159–170. 10.1007/s12393-011-9041-9
Misra, N. N., Yafav, B., Roopesh, M. S., & Jo, C. (2019). Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 106-120. 10.1111/1541-4337.12398
Oh, Y. A., Roh, S. H., & Min, S. C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocollids, 58, 150-159. 10.1016/j.foodhyd.2016.02.022
Pankaj, S. K., & Keener, K. M. (2017). Cold Plasma Applications in Food Packaging. Reference Module in Food Science. 10.1016/b978-0-08-100596-5.21417-0
Pankaj, S., Wan, Z. & Keener, K., (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7(1). doi.org/10.3390/foods7010004.
Pasquali, F., Stratakos, A. C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R., Manfreda, G., & Trevisani, M. (2016). Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control, 60, 552-559. 10.1016/j.foodcont.2015.08.043
Patange, A., Boehm, D., Giltrap, M., Lu, P., Cullen, P. J., & Bourke, P. (2018). Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of The Total Environment, 631-632, 298–307. 10.1016/j.scitotenv.2018.02.269
Patange, A., Boehm, D., Ziuzina, D., Cullen, P. J., Gilmore, B., & Bourke, P. (2019). High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. International Journal of Food Microbiology, 293, 137–145. 10.1016/j.ijfoodmicro.2019.01.005
Pignata, C., D’Angelo, D., Fea, E., & Gilli, G. (2017). A review on microbiological decontamination of fresh produce with nonthermal plasma. Journal of Applied Microbiology, 122(6), 1438–1455. 10.1111/jam.13412
Sarangapani, C., Misra, N. N., Milosavljevic, V., Bourke, P., O’Regan, F., & Cullen, P. J. (2016). Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering, 9, 225-232. 10.1016/j.jwpe.2016.01.003
Sarangapani, C., O’Toole, G., Cullen, P. J., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies, 44, 235-241. 10.1016/j.ifset.2017.02.012.
Sarangapani, C., Ryan Keogh, D., Dunne, J., Bourke, P., & Cullen, P. J. (2017). Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235, 324–333. 10.1016/j.foodchem.2017.05.016
Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. (2015). Nonthermal plasma — A tool for decontamination and disinfection. Biotechnology Advances, 33(6), 1108–1119. 10.1016/j.biotechadv.2015.01.002
Segat, A., Misra, N. N., Cullen, P. J., & Innocente, N. (2016). Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food and Bioproducts Processing, 98, 181–188. 10.1016/j.fbp.2016.01.010
Shah, K., & Muriana, P. M. (2021). Efficacy of a Next Generation Quaternary Ammonium Chloride Sanitizer on Staphylococcus and Pseudomonas Biofilms and Practical Application in a Food Processing Environment. Applied Microbiology, 1(1), 89–103. 10.3390/applmicrobiol1010008
Shi, H., Heleji, K., Stroshine, R. L., Keener, K., & Jensen, J. L. (2017). Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol, 10, 1042-1052. 10.1007/s11947-017-1873-8
Skowron, K., Hulisz, K., Gryń, G., Olszewska, H., Wiktorczyk, N., & Paluszak, Z. (2018). Comparison of selected disinfectants efficiency against Listeria monocytogenes biofilm formed on various surfaces. International Microbiology, 21(1-2), 23–33. 10.1007/s10123-018-0002-5
Soares, S. V., Picolli, I. R. A., & Casagrande, J. (2018). Pesquisa Bibliográfica. Pesquisa Bibliométrica, Artigo de Revisão e Ensaio Teórico em Administração e Contabilidade. Administração: Ensino e Pesquisa, 19(2), 308-339. 10.13058/raep.2018.v19n2.970
Surowsky, B., Bußler, S., & Schlüter, O. K. (2016). Cold Plasma Interactions With Food Constituents in Liquid and Solid Food Matrices. Cold Plasma in Food and Agriculture, 179–203. 10.1016/b978-0-12-801365-6.00007-x
Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies, 33, 225-233. 10.1016/j.ifset.2015.12.022
USDA. (2016). Cleanliness helps prevent foodborne illness [fact sheet]. https://www.fsis.usda.gov/wps/portal/fsis/topics/foodsafety-education/getanswers/food-safety-fact-sheets/safe-foodhandling/cleanliness-helps-prevent-foodborne-illness/ct_index
World Health Organization - WHO. (2020). Food safety [fact sheet]. https://www.who.int/news-room/fact-sheets/detail/food-safety.
Xu, L., Garner, A. L., Tao, B., & Keener, K. M. (2017). Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol, 10(10), 1778-1791. 10.1007/s11947-017-1947-7
Yang, Y., Mikš-Krajnik, M., Zheng, Q., Lee, S. B., Lee, S. C., and Yuk, H. G. (2016). Biofilm formation of Salmonella Enteritidis under food-related environmental stress conditions and its subsequent resistance to chlorine treatment. Food Microbiol. 54, 98–105. 10.1016/j.fm.2015.10.010
Zhu, Y., Li, C., Cui, H., & Lin, L. (2020). Feasibility of cold plasma for the control of biofilms in food industry. Trends in Food Science & Technology, 99, 142–151. 10.1016/j.tifs.2020.03.001
Ziuzina, D., Han, L., Cullen, P. J., & Bourke, P. (2015). Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. International Journal of Food Microbiology, 210, 53–61. 10.1016/j.ijfoodmicro.2015.05.019
Ziuzina, D., Misra, N. N., Cullen, P. J., Keener, K., Mosnier, J. P., Vilaró, I., Bourke, P. (2016). Demonstrating the Potential of Industrial Scale In-Package Atmospheric Cold Plasma for Decontamination of Cherry Tomatoes. Plasma Medicine, 6(3-4), 397–412. 10.1615/plasmamed.2017019498
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Amanda Cândido Brito ; Lucas Donizete da Silva ; Priscila Cristina Bizam Vianna ; Aline Dias Paiva ; Letícia Dias dos Anjos Gonçalves ; Emiliane Andrade Araújo Naves
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.