Study of cold plasma technology using the VOSviewer software

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.28107

Keywords:

Food; Foodborne diseases; Bacterial adhesion; Biofilms; Microbiological safety; Atmospheric cold plasma.

Abstract

One of the biggest challenges for food industry is to offer microbiologically safe and nutritious products to consumers. Foodborne diseases are considered a recurring public health problem, in addition to causing economic impacts for industries. Pathogenic bacteria can be introduced into foods during several steps along the production chain. In this context, microbial biofilms stand out as sources of contamination of food and processing surfaces. These biofilms form communities resistant to conventional chemical sanitizers. Thus, the demand for new alternatives for surface decontamination is evident, giving rise to interest in the application of cold plasma. This review aimed a systematic work of the literature on the use of cold plasma, using the Science Direct database, with the keywords cold plasma and biofilms. The selected articles were analyzed in Vosviewer software. After interpreting density maps, it was noticed that the most published topics related to cold plasma were food safety, food preservation and plasma. It was found that the cold plasma is a new approach, for which promising results have been observed for the microbiological safety of foods, being a viable alternative for decontamination of surfaces and foods, as well as for the reduction of microbial adhesion and formation of biofilms on food and processing surfaces. However, further studies are needed for validation and industrial commercialization and on its effects on sensory characteristics of foods subjected to this treatment.

Author Biographies

Amanda Cândido Brito , Universidade Federal do Triângulo Mineiro

Estudante de graduação do curso de Engenharia de Alimentos. 

Lucas Donizete da Silva , Universidade Federal de Uberlândia

PhD student in Chemical Engineering 

Priscila Cristina Bizam Vianna , Universidade Federal do Triângulo Mineiro

Professora do Departamento de Engenharia de Alimentos 

Aline Dias Paiva , Universidade Federal do Triângulo Mineiro

Professora de Microbiologia de Alimentos 

Letícia Dias dos Anjos Gonçalves , Universidade Federal do Triângulo Mineiro

Professora do Departamento de Engenharia de Alimentos 

References

Abdallah, M., Khelissa, O., Ibrahim, A., Benoliel, C., Heliot, L., Dhulster, P., et al. (2015). Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants. Int. J. Food Microbiol. 214, 38–47. 10.1016/j.ijfoodmicro.2015.07.022

Aguiar, M. M., Almeida, G. M. de, Camargo Filho, W. L. de, Rosário, D. K. A. do, Araújo, L. A., & Naves, E. A. A. (2021). Alta pressão hidrostática, campos elétricos pulsados e plasma frio na cadeia produtiva de alimentos: Princípios e aplicabilidade industrial. Research, Society and Development, 10(2), e50310212670. 10.33448/rsd-v10i2.12670

Aviat, F., Le, I., Federighi, M., & Montibus, M. (2020). Comparative study of microbiological transfer from four materials used in direct contact with apples. International Journal of Food Microbiology, 333, 108780. doi.org/10.1016/j.ijfoodmicro.2020.108780

Bahrami, A., Baboli, Z. M., Schimmel, K., Jafari, S. M., Williams, L. (2020). Eficiência de novas tecnologias de processamento para o controle de Listeria monocytogenes em produtos alimentícios. Tendências em Ciência e Tecnologia de Alimentos, 96, 61-78. doi.org/10.1016/j.tifs.2019.12.009

Bintsis, T. (2018). Microbial pollution and food safety. AIMS Microbiology, 4(3), 377–396. 10.3934/microbiol.2018.3.377

Boletim Epidemiológico 32. Secretaria de Vigilância em Saúde. Ministério da Saúde. Informe sobre surtos notificados de doenças transmitidas por água e alimentos – Brasil, 2016-2019. v. 51, 2020.

Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A., & Raposo, A. (2021). Microbial Biofilms in the Food Industry—A Comprehensive Review. International Journal of Environmental Research and Public Health, 18(4), 2014. 10.3390/ijerph18042014

Chen, Y.-Q., Cheng, J.-H., & Sun, D.-W. (2019). Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances. Critical Reviews in Food Science and Nutrition, 60(16), 2676–2690. 10.1080/10408398.2019.1654429

Choi, S., Puligundla, P., & Mok, C. (2015). Corona discharge plasma jet for inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on inoculated pork and its impact on meat quality attributes. Annals of Microbiology, 66(2), 685–694. 10.1007/s13213-015-1147-5

Colagiorgi, A., Bruini, I., Di Ciccio, P. A., Zanardi, E., Ghidini, S., and Ianieri, A. (2017). Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens 6:E41. 10.3390/pathogens6030041

DeFlorio, W., Liu, S., White, A. R., Taylor, T. M., Cisneros‐Zevallos, L., Min, Y., & Scholar, E. M. A. (2021). Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross‐contamination of food contact surfaces by bacteria. Comprehensive Reviews in Food Science and Food Safety, 20(3), 3093–3134. 10.1111/1541-4337.12750

Devi, Y., Thirumdas, R., Sarangapani, C., Deshmukh, R. R., & Annapure, U. S. (2017). Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control, 77, 187-191. 10.1016/j.foodcont.2017.02.019

Devleesschauwer, B., Haagsma, J. A., Mangen, M.-J. J., Lake, R. J., & Havelaar, A. H. (2018). The Global Burden of Foodborne Disease. Food Safety Economics, 107–122. 10.1007/978-3-319-92138-9_7

Fernandes, M. da S., Fujimoto, G., de Souza, L. P., Kabuki, D. Y., da Silva, M. J., & Kuaye, A. Y. (2015). Dissemination of Enterococcus faecalis and Enterococcus faeciumin a Ricotta Processing Plant and Evaluation of Pathogenic and Antibiotic Resistance Profiles. Journal of Food Science, 80(4), M765–M775. 10.1111/1750-3841.12824

Hertwig, C., Meneses, N., & Mathys, A. (2018). Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends in Food Science & Technology, 77, 131–142. 10.1016/j.tifs.2018.05.011

Jayasena, D. D., Kim, H. J., Yong, H. I., Park, S., Kim, K., Choe, W., & Jo, C. (2015). Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiology, 46, 51–57. 10.1016/j.fm.2014.07.009

Han, L., Patil, S., Boehm, D., Milosavljević, V., Cullen, P. J., & Bourke, P. (2016). Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 82(2), 450–458. 10.1128/aem.02660-15

Handorf, O., Pauker, V. I., Weihe, T., Schnabel, U., Freund, E., Bekeschus, S., Ehlbeck, J. (2020). Plasma-treated water affects Listeria monocytogenes vitality and biofilm formation. 10.21203/rs.3.rs-31328/v1

Karam, L., Casetta, M., Chihib, N. E., Bentiss, F., Maschke, U., & Jama, C. (2016). Optimization of cold nitrogen plasma surface modification process for setting up antimicrobial low density polyethylene films. Journal of the Taiwan Institute of Chemical Engineers, 64, 299–305. 10.1016/j.jtice.2016.04.018

Katsigiannis, A. S., Bayliss, D. L., & Walsh, J. L. (2021). Cold plasma decontamination of stainless steel food processing surfaces assessed using an industrial disinfection protocol. Food Control, 121, 107543. ISSN 0956-7135. doi.org/10.1016/j.foodcont.2020.107543.

Kim, J.-S., Lee, E.-J., Choi, E. H., & Kim, Y.-J. (2014). Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment. Innovative Food Science & Emerging Technologies, 22, 124–130. 10.1016/j.ifset.2013.12.012

Kim, J. Y., Song, M. G., Jeon, E. B., Kim, J. S., Lee, J. S., Choi, E. H., … Park, S. Y. (2021). Antibacterial effects of non-thermal dielectric barrier discharge plasma against Escherichia coli and Vibrio parahaemolyticus on the surface of wooden chopping board. Innovative Food Science & Emerging Technologies, 73, 102784. 10.1016/j.ifset.2021.102784

Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X., Sites, J., Boyd, G., & Chen, H. (2015). Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology, 46, 479–484. 10.1016/j.fm.2014.09.010

Laroussi, M., & Leipold, F. (2004). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 233(1-3), 81–86. 10.1016/j.ijms.2003.11.016

Li, X., & Farid, M. (2016). A review on recent development in non-conventional food sterilization technologies. Journal of Food Engineering, 182, 33–45. 10.1016/j.jfoodeng.2016.02.026

Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., & Ding, T. (2017). Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control, 75, 83–91. 10.1016/j.foodcont.2016.12.021

Mai-Prochnow, A., Clauson, M., Hong, J., & Murphy, A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 6(1). 10.1038/srep38610

Mandal, R., Singh, A., & Pratap Singh, A. (2018). Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science & Technology, 80, 93–103. 10.1016/j.tifs.2018.07.014

Min, S. C., Roh, S. H., Niemira, B. A., Sites, J. E., Boyd, G., & Lacombe, A. (2016). Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. International Journal of Food Microbiology, 237, 114–120. 10.1016/j.ijfoodmicro.2016.08.025

Misra, N. N., Moiseev, T., Patil, S., Pankaj, S. K., Bourke, P., Mosnier, J. P., Cullen, P. J. (2014). Cold Plasma in Modified Atmospheres for Post-harvest Treatment of Strawberries. Food and Bioprocess Technology, 7(10), 3045–3054. 10.1007/s11947-014-1356-0

Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science and Technology, 55, 39-47. 10.1016/j.tifs.2016.07.001

Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews, 3(3-4), 159–170. 10.1007/s12393-011-9041-9

Misra, N. N., Yafav, B., Roopesh, M. S., & Jo, C. (2019). Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 106-120. 10.1111/1541-4337.12398

Oh, Y. A., Roh, S. H., & Min, S. C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocollids, 58, 150-159. 10.1016/j.foodhyd.2016.02.022

Pankaj, S. K., & Keener, K. M. (2017). Cold Plasma Applications in Food Packaging. Reference Module in Food Science. 10.1016/b978-0-08-100596-5.21417-0

Pankaj, S., Wan, Z. & Keener, K., (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7(1). doi.org/10.3390/foods7010004.

Pasquali, F., Stratakos, A. C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R., Manfreda, G., & Trevisani, M. (2016). Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control, 60, 552-559. 10.1016/j.foodcont.2015.08.043

Patange, A., Boehm, D., Giltrap, M., Lu, P., Cullen, P. J., & Bourke, P. (2018). Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of The Total Environment, 631-632, 298–307. 10.1016/j.scitotenv.2018.02.269

Patange, A., Boehm, D., Ziuzina, D., Cullen, P. J., Gilmore, B., & Bourke, P. (2019). High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. International Journal of Food Microbiology, 293, 137–145. 10.1016/j.ijfoodmicro.2019.01.005

Pignata, C., D’Angelo, D., Fea, E., & Gilli, G. (2017). A review on microbiological decontamination of fresh produce with nonthermal plasma. Journal of Applied Microbiology, 122(6), 1438–1455. 10.1111/jam.13412

Sarangapani, C., Misra, N. N., Milosavljevic, V., Bourke, P., O’Regan, F., & Cullen, P. J. (2016). Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering, 9, 225-232. 10.1016/j.jwpe.2016.01.003

Sarangapani, C., O’Toole, G., Cullen, P. J., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies, 44, 235-241. 10.1016/j.ifset.2017.02.012.

Sarangapani, C., Ryan Keogh, D., Dunne, J., Bourke, P., & Cullen, P. J. (2017). Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235, 324–333. 10.1016/j.foodchem.2017.05.016

Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. (2015). Nonthermal plasma — A tool for decontamination and disinfection. Biotechnology Advances, 33(6), 1108–1119. 10.1016/j.biotechadv.2015.01.002

Segat, A., Misra, N. N., Cullen, P. J., & Innocente, N. (2016). Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food and Bioproducts Processing, 98, 181–188. 10.1016/j.fbp.2016.01.010

Shah, K., & Muriana, P. M. (2021). Efficacy of a Next Generation Quaternary Ammonium Chloride Sanitizer on Staphylococcus and Pseudomonas Biofilms and Practical Application in a Food Processing Environment. Applied Microbiology, 1(1), 89–103. 10.3390/applmicrobiol1010008

Shi, H., Heleji, K., Stroshine, R. L., Keener, K., & Jensen, J. L. (2017). Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol, 10, 1042-1052. 10.1007/s11947-017-1873-8

Skowron, K., Hulisz, K., Gryń, G., Olszewska, H., Wiktorczyk, N., & Paluszak, Z. (2018). Comparison of selected disinfectants efficiency against Listeria monocytogenes biofilm formed on various surfaces. International Microbiology, 21(1-2), 23–33. 10.1007/s10123-018-0002-5

Soares, S. V., Picolli, I. R. A., & Casagrande, J. (2018). Pesquisa Bibliográfica. Pesquisa Bibliométrica, Artigo de Revisão e Ensaio Teórico em Administração e Contabilidade. Administração: Ensino e Pesquisa, 19(2), 308-339. 10.13058/raep.2018.v19n2.970

Surowsky, B., Bußler, S., & Schlüter, O. K. (2016). Cold Plasma Interactions With Food Constituents in Liquid and Solid Food Matrices. Cold Plasma in Food and Agriculture, 179–203. 10.1016/b978-0-12-801365-6.00007-x

Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies, 33, 225-233. 10.1016/j.ifset.2015.12.022

USDA. (2016). Cleanliness helps prevent foodborne illness [fact sheet]. https://www.fsis.usda.gov/wps/portal/fsis/topics/foodsafety-education/getanswers/food-safety-fact-sheets/safe-foodhandling/cleanliness-helps-prevent-foodborne-illness/ct_index

World Health Organization - WHO. (2020). Food safety [fact sheet]. https://www.who.int/news-room/fact-sheets/detail/food-safety.

Xu, L., Garner, A. L., Tao, B., & Keener, K. M. (2017). Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol, 10(10), 1778-1791. 10.1007/s11947-017-1947-7

Yang, Y., Mikš-Krajnik, M., Zheng, Q., Lee, S. B., Lee, S. C., and Yuk, H. G. (2016). Biofilm formation of Salmonella Enteritidis under food-related environmental stress conditions and its subsequent resistance to chlorine treatment. Food Microbiol. 54, 98–105. 10.1016/j.fm.2015.10.010

Zhu, Y., Li, C., Cui, H., & Lin, L. (2020). Feasibility of cold plasma for the control of biofilms in food industry. Trends in Food Science & Technology, 99, 142–151. 10.1016/j.tifs.2020.03.001

Ziuzina, D., Han, L., Cullen, P. J., & Bourke, P. (2015). Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. International Journal of Food Microbiology, 210, 53–61. 10.1016/j.ijfoodmicro.2015.05.019

Ziuzina, D., Misra, N. N., Cullen, P. J., Keener, K., Mosnier, J. P., Vilaró, I., Bourke, P. (2016). Demonstrating the Potential of Industrial Scale In-Package Atmospheric Cold Plasma for Decontamination of Cherry Tomatoes. Plasma Medicine, 6(3-4), 397–412. 10.1615/plasmamed.2017019498

Published

05/04/2022

How to Cite

BRITO , A. C. .; SILVA , L. D. da .; VIANNA , P. C. B. .; PAIVA , A. D. .; GONÇALVES , L. D. dos A. .; NAVES, E. A. A. . Study of cold plasma technology using the VOSviewer software. Research, Society and Development, [S. l.], v. 11, n. 5, p. e24211528107, 2022. DOI: 10.33448/rsd-v11i5.28107. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28107. Acesso em: 4 jan. 2025.

Issue

Section

Review Article