Antimicrobial activity and antibiotic modulating effect of the bark extract of Dahlstedtia araripensis (Benth) Fabaceae
DOI:
https://doi.org/10.33448/rsd-v11i5.28145Keywords:
Dahlstedtia araripensis; Enterococcus faecalis; Benzilpenicilina; Streptococcus mutans.Abstract
There is a recurring concern about the increase in infections caused by fungi and bacteria in the hospital environment. Considering the increase in resistant microorganisms and with that the need for more aggressive treatments for the treatment of these infections, research with natural products has been an effective alternative in the search for new bioactive substances that fight different species of microorganisms. therefore, the preliminary studies with plant extracts are the basis for further work in this area. Dahlstedtia araripensis Benth (Fabaceae), popularly known as "angelim", is an endemic species from northeastern Brazil, with little research developed. This study aims to trace the preliminary chemical profile and evaluate the antimicrobial and antibiotic modulatory activity of the bark extract of the species D. araripensis (Benth). The secondary metabolite classes were identified from qualitative chemical prospecting. For the antimicrobial assays, 7 standard bacterial strains and 1 multidrug-resistant, and 3 fungal strains belonging to the genus Candida were used. Using the microdilution method the MIC for each strain was determined and the modulating potential of extract was evaluated. The chemical tests identified the presence of tannins and flavonoids. The antimicrobial assays showed good results against the Gram-Positive bacteria Streptococcus mutans and Enterococcus faecalis with MIC of 256 μg/mL, and a potentiation of the extract in the antibiotic benzylpenicillin action against E. faecalis. The extract did not show antifungal activity. Other works are essential for chemical characterization and bactericidal analysis by other more specific methods.
References
Bohneberger, G. Machado, M. A. Debiasi, M. M. Dirschnabel, A. J. & Ramos, G. O. (2019). Phytotherapy in dentistry, when can we use them? Braz. J. Health Rev. 2, 3504-3517. https://doi.org/10.34119/bjhrv2n4-114.
Braga, P. C. Culici, M. Alfieri, M. & Dal Sasso, M. (2008). Thymol inhibits Candida albicans biofilm formation and mature biofilm. Int. J. Antimicrob. 31, 472–477. https://doi.org/10.1016/j.ijantimicag.2007.12.013.
Canzi, E. F. Marques, F. A. Teixeira, S. D. Tozzi, A. M. G. A. Silva, M. J. Duarte, R. M. T. Duarte, M. C. T. Ruiz, A. L. T. G. Monteiro, P. A. Carvalho, J. E. & Maia, B. L. N. S. (2014). Prenylated flavonoids from roots of Dahlstedtia glaziovii (Fabaceae). J Braz Chem Soc. 25, 995-1001. https://doi.org/10.5935/0103-5053.20140071.
CLSI, Clinical and Laboratory Standards Institute. 2008. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; M27-A3., Wayne, PA: Clinical and Laboratory Standards Institute.
Corrêa, R. F. (2007). Efeitos antimicrobianos, antiácidos e removedores de biofilme de algumas espécies vegetais amazônicas sobre Streptococcus mutans. Dissertação (Mestrado em biotecnologia), Universidade Federal do Amazonas. Manaus.
Coutinho, H. D. M. Costa, J. G. Lima, E. O. Falcão-Silva, V. S. & Siqueira-Júnior J. P. (2008). Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemother, 54, 328-330. https://doi.org/10.1159/000151267.
Coutinho, H. D. M. Costa, J. G. M. Lima, E. O. Falcão-Silva, V. S. & Siqueira Júnior, J. P. (2008). Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemotherapy. 54, 328-330. https://doi.org/10.1159/000151267.
Coutinho, H. D. M. Silva, I. Freitas, M. A. Gondim, C. N. F. L. Gondim, F. L. & Andrade, J. C. (2013). Análise físico-química e avaliação antimicrobiana do fruto cambuí (Myrcia multiflora). Rev. Biol. Farm. 9, 96-103.
Cushnie, T. P. T. & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 26, 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002.
Donlan, R. M. (2001). Biofilms and device-associated infections. Emerg. Infect. Dis. 2, 277-281. https://doi.org/10.3201/eid0702.010226.
Endo, M. S. Signoretti, F. G. Kitayama, V. S. Marinho, A. C. S. Martinho, F. C. & Gomes, B. P. F. (2014). Culture and molecular detection of from patients with failure endodontic treatment and antimicrobial susceptibility of clinical isolates Enterococcus faecalis. Braz Dent Sci. 17, 83–91. https://doi.org/10.14295/bds.2014.v17i3.1016.
Esposito, S. Canevini, M. P. & Principi, N. (2017). Complications associated with antibiotic administration: neurological adverse events and interference with antiepileptic drugs. Int J Antimicrob Agents. 50, 1–8. https://doi.org/10.1016/j.ijantimicag.2017.01.027.
Flambó, D. F. A. L. (2013). Atividades biológicas dos flavonoides: atividade antimicrobiana. Dissertação (Mestrado em Ciências Farmacêuticas), Universidade Fernando Pessoa. Porto.
Felix, A. L. M. Medeiros, I. L. & Medeiros, F. D. (2018). Allium Sativum: a new approach to microbial resistance -a review. Brazilian Journal of Health. Review. 1, 201-207.
Franco, T. C. C. F. Amoroso, P. Marin, J. M. & Ávila, F. A. (2007). Detection of Streptococcus mutans and Streptococcus sobrinus in dental plaque samples from brazilian preschool children by polymerase chain reaction. Braz Dent J. 18, 329-333. https://doi.org/10.1590/S0103-64402007000400011.
Garcez, F. R. Scramin, S. Nascimento, M. C. & Mors, W. B. (1988). Prenylated flavonoids as evolutionary indicators in the genus Dahlstedtia. Phytochemistry. 27, 1079-1083. https://doi.org/10.1016/0031-9422(88)80277-2.
Li, Y. Jiang, X. Hao, J. Zhang, Y. & Huang, R. (2019). Tea polyphenols: application in the control of oral microorganism infectious diseases. Arch Oral Biol. 102, 74-82, 2019. https://doi.org/10.1016/j.archoralbio.2019.03.027.
Lima, M. C. Sousa, C. P. Fernandez-Prada, C. Harel, J. Dubreuil, J. D. & Souza, E. L. (2019). A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb. Pathog. 130, 259-270. https://doi.org/10.1016/j.micpath.2019.03.025.
Mann, C. M. & Markham, J. L. (1998). A new method for determining the minimum inhibitory concentration of essential oils. J Appl Microbiol. 84, 538-44. https://doi.org/10.1046/j.1365-2672.1998.00379.x.
Matos, F. J. A. (1997). Introdução à Fitoquímica Experimental. (2a ed.), Edições UFC.
Michelin, A. F. & Fonseca, M. R. C. C. (2018). Perfil epidemiológico das infecções hospitalares na unidade de terapia intensiva de um hospital terciário. Revista nursing. 21, 2037-2041.
NCCLS, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically (2003) USA.
Nepel, A. (2015). Flavonoides de Dahlstedtia grandiflora. Dissertação (Mestrado em Química), Universidade Federal do Paraná. Curitiba.
Pinheiro, E. T. Gomes, B. P. Ferraz, C. C. Teixeira, F. B. Zaia, A. A. & Souza Filho, F. J. (2003). Evaluation of root canal microorganisms isolated from teeth with endodontic failure and their antimicrobial susceptibility. Oral Microbiol Immunol. 18, 100–3. https://doi.org/10.1034/j.1399-302X.2003.00058.x.
Pinheiro, E. T. Gomes, B. P. F. A. Drucker, D. B. Zaia, A. A. Ferraz, C. C. R. & Souza-Filho, F. J. (2004). Antimicrobial susceptibility of Enterococcus faecalis isolated from canals of root filled teeth with periapical lesions. Int. Endod. J. 37, 756–763. https://doi.org/10.1111/j.1365-2591.2004.00865.x.
Rabêlo, S. V. Costa, M. M. Libório, R. C. & Almeida, J. R. G. S. (2014). Atividade antioxidante e antimicrobiana de extratos de atemoia (Annona cherimola MILL. x A. squamosa L.). Rev Bras Frutic. 36, 265-271. https://doi.org/10.1590/S0100-29452014000500031.
Rocha, M. P. Silva, R. V. Silva, L. R. M. Rocha, T. C. M. Brito, A. M. & Pereira, R. P. (2017). Retratamento endodôntico não cirúrgico: relato de caso. Rev. Odontol. Univ. Cid. São Paulo. 28, 270-276.
Silva, V. B. Bezerra, J. W. A. Cruz, M. F. Santos, C. L Oliveira, J. F. S. Santos, M. A. F. Santos, A. C. B. Costa, N. C. Campos, N. B. Cordeiro, L. S. Costa, J. G. M. & Silva, M. A. P. (2019). Allelopathy of Dahlstedtia araripensis on Calotropis procera and Zea mays. J Agric Sci. 11, 32-46. https://doi.org/10.5539/jas.v11n14p32.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Lucas Ribeiro Costa; Jairo Ferreira da Silva Neto; Cicera Janaine Camilo; Débora Odília Duarte Leite; Aracélio Viana Colares; João Tavares Calixto Junior; Maria Flaviana Bezerra Morais Braga; Bruno Pinheiro Máximo; Victor Juno Alencar Fonseca; José Galberto Martins da Costa; Vanessa de Carvalho Nilo Bitu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.