Production and Application of Biosensors: A Brief Review

Authors

  • Pedro Emílio Amador Salomão Universidade Presidente Antônio Carlos

DOI:

https://doi.org/10.17648/rsd-v7i3.282

Keywords:

Biosensors; electrode; semi conductor; signal.

Abstract

In a modern world where efficiency, precision and time savings have been prioritized, a new frontier has been seen in the biosensors to be explored. A potential alternative to the current means of quantification and qualification, the biosensors have been gaining more and more prominence as they are devices of quantification and qualification cheaper and simple, when compared with the current techniques and with the advantage of being able to be used many times in the place where the sample is collected. According to its application is produced by different methods, in which it has in its basic constitution a sensor element of biological origin, an inorganic half-conductor used as a transducer and a signal processing device. In this article we show the scientific production involving biosensors, together with their synthesis method, which differs according to their application in order to detect the most varied analytes, chemical species and even living organisms.

Author Biography

Pedro Emílio Amador Salomão, Universidade Presidente Antônio Carlos

Professor Adjunto I na Universidade Presidente Antônio Carlos de Teófilo Otoni/MG (UNIPAC-TO), químico responsável técnico da UNIPAC-TO e doutorando em química pela UFVJM campus Teófilo Otoni/MG.

References

RAKHI, R. B., NAYAK, P., XIA, C., & ALSHAREEF, H. N. (2016). Erratum: Novel amperometric glucose biosensor based on MXene nanocomposite. Scientific reports, 6, 38465.

PU, J., ZINKUS-BOLTZ, J., & DICKINSON, B. C. (2017). Evolution of a split RNA polymerase as a versatile biosensor platform.Nature Chemical Biology, 13(4), 432-438.

XU, S., ZHAN, J., MAN, B., JIANG, S., YUE, W., GAO, S., & ZHOU, Y. (2017). Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphenebiosensor. Nature Communications, 8, 14902.

ETEZADI, D., WARNER IV, J. B., RUGGERI, F. S., DIETLER, G., LASHUEL, H. A. & ALTUG, H. (2017). Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection.Light: Science & Applications, 6(8), e17029.

LU, X., TAO, L., SONG, D., Li, Y., & GAO, F. (2018). Bimetallic Pd/Au nanorods based ultrasensitive acetylcholinesterase biosensor for determination of organophosphate pesticides. Sensors and Actuators B: Chemical, 255, 2575-2581.

DAI, H., ZHANG, S., HONG, Z., & LIN, Y. (2016). A potentiometric addressable Photoelectrochemical biosensor for sensitive detection of two biomarkers. Analytical chemistry, 88(19), 9532-9538.

XU, T. S. (2016). Bioconjugation of peroxidase-like nanostructures with natural enzyme for in-situ amplified conductometric immunoassay of tissue polypeptide antigen in biological fluids. Biochemical Engineering Journal, 105, 36-43.

JIN, Y., XIE, Y., WU, K., HUANG, Y., WANG, F., & ZHAO, R. (2017). Probing the dynamic interaction between damaged DNA and a cellular responsive protein using a piezoelectric mass biosensor. ACS Applied Materials & Interfaces, 9(10), 8490-8497.

JIN, Z., GUAN, W., LIU, C., XUE, T., WANG, Q., ZHENG, W., & CUI, X. (2016). A stable and high resolution optical waveguide biosensor based on dense TiO 2/Ag multilayer film. Applied Surface Science, 377, 207-212.

MAO, H., ZUO, Z., YANG, N., HUANG, J. S., & YA, Y. (2017). A Microfluidic Colorimetric Biosensor for Chlorpyrifos Determination based on Peroxidase-like CuFe2O4/GQDs Magnetic Nanoparticles. Journal of Residuals Science & Technology.

GAO, S., ZHENG, X., & WU, J. (2017). A biolayer interferometry-based competitive biosensor for rapid and sensitive detection of saxitoxin.Sensors and Actuators B: Chemical, 246, 169-174.

ZHOU, W. & BURKE, P. J. (2017). Versatile Bottom-Up Synthesis of Tethered Bilayer Lipid Membranes on Nanoelectronic Biosensor Devices.ACS Applied Materials & Interfaces, 9(17), 14618-14632.

GUERREIRO, J. R. L., BOCHENKOV, V. E., RUNAGER, K., ASLAN, H., Dong, M., Enghild, J. J., ... & Sutherland, D. S. (2016). Molecular imprinting of complex matrices at localized surface plasmon resonance biosensors for screening of global interactions of polyphenols and proteins. Acs Sensors, 1(3), 258-264.

SHCHERBAKOVA, D. M., BALOBAN, M., EMELYANOV, A. V., BRENOWITZ, M., GUO, P., &Verkhusha, V. V. (2016). Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nature communications, 7.

ZHU, X., SHINOHARA, H., MIYATAKE, R., &HOHSAKA, T. (2016). Novel biosensor system model based on fluorescence quenching by a fluorescent streptavidin and carbazole‐labeled biotin. Journal of Molecular Recognition, 29(10), 485-491.

BRIONES, M., CASERO, E.,VÁZQUEZ, L., PARIENTE, F., LORENZO, E., & PETIT-DOMÍNGUEZ, M. D. (2016). Diamond nanoparticles as a way to improve electron transfer in sol–gel l-lactate biosensingplatforms. Analytica chimica acta, 908, 141-149.

WU, M., ZHAN, J., GENG, B., HE, P., WU, K., WANG, L., ...& PAN, D. (2017). Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs. Nanoscale, 9(35), 13195-13202.

RAJPUT, S., SINGH, L. P., PITTMAN, C. U., & MOHAN, D. (2017). Lead (Pb 2+) and copper (Cu 2+) remediation from water using superparamagnetic maghemite (γ-Fe 2 O 3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP). Journal of colloid and interface science, 492, 176-190.

BRAVO, I.,REVENGA-PARRA, M., PARIENTE, F., & LORENZO, E. (2017). Reagent-Less and Robust Biosensor for Direct Determination of Lactate in Food Samples. Sensors, 17(1), 144.

HAMMAMI, A., KULIČEK, J., &RAOUAFI, N. (2016). A naphthoquinone/SAM-mediated biosensor for olive oil polyphenol content.Food chemistry, 209, 274-278.

FARAH, A. A., SUKOR, R., FATIMAH, A. B., &JINAP, S. (2016). Application of nanomaterials in the development of biosensors for food safety and quality control.International Food Research Journal, 23(5).

YANG, W., HE, J., & CHEN, P. (2016, November). Nanoplasmonic cytokine biosensor towards precision medicine.In Sensing Technology (ICST), 2016 10th International Conference on (pp. 1-4).IEEE.

PENG, L., DONG, S., WEI, W., YUAN, X., & HUANG, T. (2017). Synthesis of reticulated hollow spheres structure NiCo 2 S 4 and its application in organophosphate pesticides biosensor.Biosensors and Bioelectronics, 92, 563-569.

PENG, H. T., SAVAGE, E., VARTANIAN, O., SMITH, S., RHIND, S. G., TENN, C., & BJAMASON, S. (2016). Performance Evaluation of a Salivary Amylase Biosensor for Stress Assessment in Military Field Research. Journal of clinical laboratory analysis, 30(3), 223-230.

PANTOJA, S., PARRO, V., NESTLER, J., GEIDEl, S., MARTINS, R., CUESTA, F. & SOUSA, A. (2017, November). Nanophotonic biosensor for space exploration (PBSA instrument). In International Conference on Space Optics—ICSO 2014 (Vol. 10563, p. 105635D). International Society for Optics and Photonics.

KAO, C. H., CHANG, C. W., CHEN, Y. T., SU, W. M., LU, C. C., LIN, C. Y., & CHEN, H. (2017). Influence of NH3 plasma and Ti doping on pH-sensitive CeO2 electrolyte-insulator-semiconductor biosensors. Scientific Reports, 7.

RAICOPOl, M. D., ANDRONESCU, C., ATASIEI, R., HANGANU, A., VASILE, E., BREZOIU, A. M., & PILAN, L. (2016). Organic layers via aryl diazonium electrochemistry: towards modifying platinum electrodes for interference free glucose biosensors. Electrochimica Acta, 206, 226-237.

LI, H., WANG, F., GE, S., LIU, H., YAN, M., & YU, J. (2017). Turning Nonspecific Interference into Signal Amplification: Covalent Biosensing Nanoassembly Enabled by Metal-Catalyzed Cross-Coupling. Analytical Chemistry.

AZZOUZI, S., ROTARIU, L., BENITO, A. M., MASER, W. K., ALI, M. B., & BALA, C. (2015). A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of L-lactate tumor biomarker. Biosensors and Bioelectronics, 69, 280-286.

FAN, Z., LIN, Q., GONG, P., LIU, B., WANG, J., & YANG, S. (2015). A new enzymatic immobilization carrier based on graphene capsule for hydrogen peroxide biosensors. Electrochimica Acta, 151, 186-194.

SCHULZ, C., KITTL, R., LUDWIG, R., & GORTON, L. (2015). Direct electron transfer from the FAD cofactor of cellobiose dehydrogenase to electrodes. ACS Catalysis, 6(2), 555-563.

MITTAL, S., KAUR, H., GAUTAM, N., & MANTHA, A. K. (2017). Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies. Biosensors and Bioelectronics, 88, 217-231.

SARKAR, D., LIU, W., XIE, X., ANSELMO, A. C., MITRAGOTRI, S., & BANERJEE, K. (2014). MoS2 field-effect transistor for next-generation label-free biosensors. ACS nano, 8(4), 3992-4003.

ZHOU, W., HUANG, P. J. J., DING, J., & LIU, J. (2014). Aptamer-based biosensors for biomedical diagnostics. Analyst, 139(11), 2627-2640.

Published

27/02/2018

How to Cite

AMADOR SALOMÃO, P. E. Production and Application of Biosensors: A Brief Review. Research, Society and Development, [S. l.], v. 7, n. 3, p. e1373282, 2018. DOI: 10.17648/rsd-v7i3.282. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/282. Acesso em: 22 nov. 2024.

Issue

Section

Articles