Diagnosis of the production cycle in the small shaft sinking
DOI:
https://doi.org/10.33448/rsd-v11i5.28233Keywords:
Mine work; Underground mine; Small mines; Statistical distribution.Abstract
Shaft sinking is a classic activity in underground mines. In shafts with small cross-section or in mines with low mechanization indices it is common to use hand pneumatic drills and blasting by explosive gelatin in cartridges, employing natural draft or flexible ducts with axial fans for gases and fumes exhaustion, muck removal by hand shoveling into hoistable dumping buckets. System of this type has been studied here, consisting of a rectangular cross-section shaft (3.7 m x 2.0 m), with final depth of 94 m, excavated in order to obtain samples for a pilot-scale mineral processing testwork, before the open pit mine’s industrial startup. The shaft had a concrete collar and its walls were supported by wooden sets spaced 1.5 m and 25 mm thick wooden planks as liners. This shaft has been excavated in schist rocks belonging to the metamorphosed hydrothermal deposit of copper and gold located in Chapada (municipality of Mara Rosa, Brazil). Daily production worksheets covering one month campaign were statistically analyzed, encompassing the entire cycle of mining operations, namely drilling, charging and blasting, fumes exhaustion, mucking, wall and face trimming and scaling, and assemblage of support system. Operation downtimes were also quantified. Statistical analysis of productivity indices allowed the detection of critical points of the operation and the establishment reference for similar mining operations.
References
Bajić, Z., Bogdanov, J., Dimitrijević, R., & Jeremić, R. (2016). Investigation of scaled distance influence on shockwave overpressure for plastic explosive PPE-01. 19th International Seminar "New Trends in Research of Energetic Materials". Pardubice: University of Pardubice. 1 – 6.
Boky, B. (1967). Mining. Moscow: Mir Publishers.753 p.
Cintra, E. C. (2003). Aplicação de redes neurais no controle de teores de cobre e ouro do depósito de Chapada (GO) (PhD Thesis). Rio Claro: Universidade Estadual Paulista — Instituto de Geociências e Ciências Exatas.
Cotica, E. (209). Personal Communication at Mina Engenho D’Água, Mundo Mineral, Rio Acima, Minas Gerais, Brazil.
da Luz, J. A. M., Montenegro-Balarezo, F. J., & Pereira, C. A. (2003). Emprego de argamassa expansiva e termoconsolidação de peças em cantaria. Rem: Rev. Esc. Minas, 56(3); DOI: S0370-44672003000300003.
de Vries A., & de Looze, M. (2019). The Effect of Arm Support Exoskeletons in Realistic Work Activities: A Review Study. Journal of Ergonomics, 9(4); 1–9.
Faurie, J. (2010) Mining contractor working on safer product — enhancing shaft sinking method. Available at www.miningwekly.com, access in 2010.
Dowis, J. E. Shaft sinking cost analysis [Master dissertation] (1972). Tucson: The University of Arizona.159 p.
Fujimura, F., Hennies,W. T., Soares, L., & Carnero, L. T. C. (2001). Mining shaft construction method at Fazenda Brasileiro Gold Mine — CVRD. Mine Planning and Equipment Selection Symposium; 223-231.
Gardner, E. D., & Johnson, J. F. (1932). Shaft-sinking practices and costs (Bulletin 357). Washington: U. S. Department of Commerce/Bureau of Mines. 116 p.
Harris. M. L., & Mainiero, R. J. (2008). Monitoring and removal of CO in blasting operations. Safety Science; 46(10); 1393 – 1405.
Hashimoto, G. H., Rodrigues, F. S., & Gontijo, A. (2014). Análise do Abatimento de Choco Mecanizado em Desmontes Subterrâneos com Pré-Corte em Galerias de Desenvolvimento. Simpósio Brasileiro de Mecânica das Rochas; 1 – 6.
Hiserman, J. (2020). The Rise of the Exoskeletons. Journal of Ergonomics; 10(2); 1–2. 10.35248/2165-7556.20.10.e187.
Huysamena, K., de Loozeb, M., Boschb, T., Ortizc, J., Toxiric, S., & O'sullivan, L. W. (2018). Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Applied Ergonomics 68; 125–131.
Kumar, A. R. K., Shenbagaraj, N. A., & Haridasan, V. P. (2017). Single arm exoskeleton for industrial use — a project report. Kattankulathur: S.R.M. University. 52 p.
Kumar, R., Choudhury, D., Bhargava, K. (2016). Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties. Journal of Rock Mechanics and Geotechnical Engineering; 8(3); 341 – 349.
Kuyumjian, R. M. (1989). The geochemistry and tectonic significance of amphibolites from the Chapada sequence, central Brazil (PhD Thesis). London: University of London.
Lack, P. H. (2005). Personal Communication at Departamento de Engenharia de Minas, Escola de Minas, Universidade Federal de Ouro Preto, Brazil.
Linnera, T., Panb, M., Pana,W., Taghavia, M., Panb, W., & Bocka, T. (2018). Identification of Usage Scenarios for Robotic Exoskeletons in the Context of the Hong Kong Construction Industry. 35th International Symposium on Automation and Robotics in Construction (ISARC 2018); 3–8.
Liu, D. X., Wu, X., Wang, M., Chen, C., Zhang, T., & Fu, R. (2015). Non-Binding Lower Extremity Exoskeleton (NextExo) for Load-Bearing. Proceedings of the 2015 IEEE Conference on Robotics and Biomimetics; Zhuhai, China.
Lopes, P. F. T., Luz, J. A. M. da, Pereira, & T., Silveira, L. G. (2022). Statistical analysis of blast-induced vibration near an open pit mine. Anais da Academia Brasileira de Ciências (in press).
Lopes, P. F. T.; Luz, J. A. M. da, & Milhomem, F. de O. (2020). Specific surface area of polydispersions as a function of size distribution sharpness. Anais da Academia Brasileira de Ciências; 92(3); 1–7.
Mancala (2017). Innovative Mining & Civil Solutions — Raise Boring: Innovative Raise Drilling Technology and Equipment. 2p. http://files8.design-editor.com/93/9396758/UploadedFiles/0AF92F9F-3A88-D9BC-7AF4- 87523F18 AC C C.pdf.
Netto, F. (2010). Planejamento de Lavra Subterrânea. VI Congresso Brasileiro de Mina Subterrânea. UFMG/IBRAM.
Oliveira, C. G., Oliveira, F. B., Dantas E. L., & Fuck, R. A. (2007). Nota Explicativa da Folha de Campinorte (SD. 22-Z-B-I). Brasília: CPRM/UNB. 77 p.
Ramos Filho, W. L., Araujo Filho, J. O., & Kuyumjian, R. M. (2003). Características do Ambiente Estrutural do Depósito de Chapada, Goiás. Revista Brasileira de Geociências; 33(2); 109–116.
Sanada, H., Sato, T., Horiuchi, Y., Mikake, S., Okihara, M., Yahagi, R., & Kobayashi, S. (2015). Excavation cycle times recorded during sinking of a deep shaft in crystalline rock – A case example at Ventilation Shaft of Mizunami URL, Japan. Tunnelling and Underground Space Technology; 50; 68 – 78.
Schneider, L. C. Blasting and Explosives. (2002). In: Lowrie R L. (Ed.). SME Mining Reference Handbook. 203 – 214. Littleton: SME. 449 p.
Shahmoradi, J., Roghanchi, P., &Hassanalian, M. (2020). Drones in Underground Mines: Challenges and Applications. In: Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference — University of New Mexico, Albuquerque. Pp 1–2.
Shaterpour-Mamaghani, A., & Bilgin, N. (2016). Some contributions on the estimation of performance and operational parameters of raise borers – A case study in Kure Copper Mine, Turkey. Tunnelling and Underground Space Technology; 54; 37 – 48.
Silva, E. L., & Alcântara, W. M. M. (2008). Nova técnica de abertura de chaminés cegas nas minas FERBASA. V Congresso Brasileiro de Mina Subterrânea. Belo Horizonte: UFMG/IBRAM.
Souza, R. C. (2017). Lavra subterrânea de veios estreitos: dificuldades e soluções. Ouro Preto: Universidade Federal de Ouro Preto. 49 p.
USA Army. Tunnels and Shafts in Rocks. (1997). Washington: U. S. Army. 528 – 534.
Visser, D. (2009). Shaft sinking methods based on the Towlands ore replacement project — Raiseboring. In: Shaft Sinking and Mining Contractors Conference 2009. Johannesburg: The Southern African Institute of Mining and Metallurgy Journal. 13 p.
Zhang, C., Hu, F., & Zou, S. (2015). Effects of blast induced vibrations on the fresh concrete lining of a shaft. Tunnelling and Underground Space Technology; 20; 356 – 361.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 José Aurélio Medeiros da Luz; José Margarida da Silva; Pedro Henrique Neuppmann
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.