Diagnosis of the nutritional status of coffee tree according to fruit phenology

Authors

DOI:

https://doi.org/10.33448/rsd-v11i6.28591

Keywords:

Leaf diagnosis; Nutritional status; Phenological stage; Coffea arabica.

Abstract

The appropriate time for leaf collection to evaluate the nutritional status of the coffee tree should be carried out when the nutrient is in higher levels in the leaves, which may vary according to the phenological stage of the fruits. Macro and micronutrients do not show the same pattern regarding the period of highest leaf content. Therefore, it is coherent to define different times of leaf collection for each nutrient. The objective of this study was to verify the most suitable times for collecting leaves to evaluate the nutritional status of coffee plants based on the phenological development of coffee fruits. The experiment was carried out in a commercial field, in which six coffee cultivars were used (Acauã Novo, Bourbon Amarelo, Catuaí Vermelho IAC 144, Catucaí 20/15, IAC 125 RN and IPR 100). The collections were carried out in four phenological phases of coffee fruit development (floral bud maturation, chumbinho, fruit expansion, and fruit granulation). The periods with the highest concentrations varied based on the phenological stages of the fruits, and differences in concentrations were also observed between the cultivars examined. The highest zinc concentration in the leaves was observed in the maturation phase of the floral bud. Foliar collection for the diagnosis of the nutritional state of the coffee plant should be done for each nutrient based on the phenology of the fruits.

References

Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507

Amaral, J. F. T. do, Martinez, H. E. P., Laviola, B. G., Fernandes Filho, E. I., & Cruz, C. D. (2011). Eficiência de utilização de nutrientes por cultivares de cafeeiro. Ciência Rural, 41(4), 621–629. https://doi.org/10.1590/s0103-84782011005000027

Bragança, S. M., Martinez, H. E. P., Leite, H. G., Santos, L. P., Sediyama, C. S., Víctor, H. A. V., & Lani, J. A. (2007). Accumulation of Macronutrients for the Conilon Coffee Tree. Https://Doi.Org/10.1080/01904160701741990, 31(1), 103–120. https://doi.org/10.1080/01904160701741990

Da Matta, F. M., Do Amaral, J. A. T., & Rena, A. B. (1999). Growth periodicity in trees of Coffea arabica L. in relation to nitrogen supply and nitrate reductase activity. Field Crops Research, 60(3), 223–229. https://doi.org/10.1016/S0378-4290(98)00127-0

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/J.PLAPHY.2010.08.016

Hocking, B., Tyerman, S. D., Burton, R. A., & Gilliham, M. (2016). Fruit Calcium: Transport and Physiology. Frontiers in Plant Science, 7(APR2016). https://doi.org/10.3389/FPLS.2016.00569

Karimi, R. (2017). Potassium-induced freezing tolerance is associated with endogenous abscisic acid, polyamines and soluble sugars changes in grapevine. Scientia Horticulturae, 215, 184–194. https://doi.org/10.1016/j.scienta.2016.12.018

Kim, Y. H., Khan, A. L., Waqas, M., & Lee, I. J. (2017). Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: A review. Frontiers in Plant Science, 8, 510. https://doi.org/10.3389/FPLS.2017.00510/BIBTEX

Kunrath, T. R., Lemaire, G., Sadras, V. O., & Gastal, F. (2018). Water use efficiency in perennial forage species: Interactions between nitrogen nutrition and water deficit. Field Crops Research, 222, 1–11. https://doi.org/10.1016/J.FCR.2018.02.031

Laviola, B. G., Martinez, H. E. P., de Souza, R. B., & Víctor, H. A. V. (2007). DINÂMICA DE CÁLCIO E MAGNÉSIO EM. 1, 319–329.

Maia, C. E., Morais, E. R. C. de, Porto Filho, F. de Q., Gueyi, H. R., & Medeiros, J. F. de. (2005). Teores foliares de nutrientes em meloeiro irrigado com águas de diferentes salinidades. Revista Brasileira de Engenharia Agrícola e Ambiental, 9(suppl 1), 292–295. https://doi.org/10.1590/1807-1929/agriambi.v9nsupp292-295

Malavolta, E (2006) Manual de Nutrição Mineral de Plantas. São Paulo, SP: Ceres. 638.

Marenco, R. A.; Lopes, N. F (2005) Fisiologia vegetal: fotossíntese, respiração, relações hídricas e nutrição mineral. Viçosa, MG: Universidade Federal de Viçosa. 451.

Martinelli, L.A., Ometto, J.P.H.B., Ferraz, E.S., Victoria, R.L., Camargo, P.B., & Victoria, R.L (2009) Desvendando questões ambientais com isótopos estáveis. São Paulo: Oficina de Textos. 144.

Marschner, H (Ed 3) (2012) Marschner’s mineral nutrition of higher plants. Academic, London, 651.

Martinez, H. E. P., Menezes, J. F. S., Souza, R. B. de, Alvarez Venegas, V. H., & Guimarães, P. T. G. (2003). Faixas críticas de concentrações de nutrientes e avaliação do estado nutricional de cafeeiros em quatro regiões de Minas Gerais. Pesquisa Agropecuária Brasileira, 38(6), 703–713. https://doi.org/10.1590/s0100-204x2003000600006

Miyazawa, M., Pavan, M. A., Muraoka, T., Carmo, C. A. F. S., & Melo, W. J (Ed 2). (2009) Análise química de tecido vegetal. In: SILVA, F. C. Manual de análises químicas de solos, plantas e fertilizantes. Brasília, DF: Embrapa Informação tecnológica. 191-233.

Partelli, F. L., Espindula, M. C., Marré, W. B., & Vieira, H. D. (2014). Dry matter and macronutrient accumulation in fruits of Conilon coffee with different ripening cycles. Revista Brasileira de Ciência Do Solo, 38(1), 214–222. https://doi.org/10.1590/s0100-06832014000100021

Ramírez, F., Bertsch, F., & Mora, L. (2002). Consumo de nutrimentos por los frutos y bandolas de cafe Caturra durante un ciclo de desarrollo y maduracion en Aquiares, Turrialba, Costa Rica. Agronomía Costarricence, 26, 33-42 Disponible en: http://www.redalyc.org/articulo.oa?id=43626104.

Reis, A. R., Favarin, J. L., Gratão, P. L., Capaldi, F. R., & Azevedo, R. A. (2015). Antioxidant metabolism in coffee (Coffea arabica L.) plants in response to nitrogen supply. Theoretical and Experimental Plant Physiology, 27(3–4), 203–213. https://doi.org/10.1007/S40626-015-0045-3/FIGURES/4

Ronchi, C. P., de Araújo, F. C., de Almeida, W. L., da Silva, M. A. A., Magalhães, C. E. de O., de Oliveira, L. B., & Drumond, L. C. D. (2015). Ecophysiological responses of coffee plants subjected to water deficit to narrow blossom period in the Cerrado in the state of Minas Gerais, Brazil. Pesquisa Agropecuaria Brasileira, 50(1), 24–32. https://doi.org/10.1590/s0100-204x2015000100003

Silber, A., Naor, A., Cohen, H., Bar-Noy, Y., Yechieli, N., Levi, M., Noy, M., Peres, M., Duari, D., Narkis, K., & Assouline, S. (2018). Avocado fertilization: Matching the periodic demand for nutrients. Scientia Horticulturae, 241, 231–240. https://doi.org/10.1016/J.SCIENTA.2018.06.094

Taiz, L.; Zeiger, E.; Moller, I.; & Murphy, A (Ed. 6). (2017) Fisiologia e desenvolvimento vegetal. Porto Alegre: Artmed, 888 p.

Valarini, V., Bataglia, O. C., & Fazuoli, L. C. (2005). Macronutrientes em folhas e frutos de cultivares de café arábica de porte baixo. Bragantia, 64(4), 661–672. https://doi.org/10.1590/S0006-87052005000400016

Wielgolaski, F. E. (2001). Phenological modifications in plants by various edaphic factors. International Journal of Biometeorology, 45(4), 196–202. https://doi.org/10.1007/s004840100100

Downloads

Published

18/04/2022

How to Cite

SILVA, C. D. da .; SILVA , L. F. V. da .; BARBOSA, G. M. D. .; FRANCO , M. F. S. .; DELGADO , E. U. A.; FARIÑA, P. R. V. .; AQUINO , L. A. de . Diagnosis of the nutritional status of coffee tree according to fruit phenology. Research, Society and Development, [S. l.], v. 11, n. 6, p. e1311628591, 2022. DOI: 10.33448/rsd-v11i6.28591. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28591. Acesso em: 28 may. 2022.

Issue

Section

Agrarian and Biological Sciences