Preparation and Characterization of Photo/Ionochromism-Activated Spiropyran-Derived Merocyanines

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.28661

Keywords:

Photochromism; UV Light; Metal complexes.

Abstract

Spiropyrans are a sort of organic molecule, known for their unique photochromic properties that allow them to be used in several application areas. The irradiation with ultraviolet light induces a ring-opening reaction of the spiropyran structure, breaking a specific carbon-oxygen bond, which gives rise to the open form called merocyanine, making its reactivity easily detectable. The objective of this research was to carry out the synthesis, characterization and study of the isomerization of hydroxy-functional spiropyrans from the formation of new metal complexes. In this work, a spiropyran-like molecule was synthesized from the condensation reaction of methyleneinoline precursors and hydroxybenzaldehyde derivative. The structures were characterized by UV-Vis, Infrared and 1H NMR spectrometric techniques. The product, when exposed to UV light, was able to rearrange and break the C-O bond, producing the open form of merocyanine. Furthermore, the complexation of metal ions Ca2+, Fe2+ and Ni2+ with spiropyran in solution revealed interesting spectral changes, which are concentration dependent, forming the merocyanine structure. These results are interesting from the point of view of chemosensor applications for metal ions.

References

Aakeröy, C. B., Hurley, E. P., Desper, J., Natali, M., Douglawi, A., & Giordani, S. (2010). The balance between closed and open forms of spiropyrans in the solid state. CrystEngComm, 12(4), 1027-1033.

Baldrighi, M., Locatelli, G., Desper, J., Aakeröy, C. B., & Giordani, S. (2016). Probing metal ion complexation of ligands with multiple metal binding sites: The case of spiropyrans. Chemistry–A European Journal, 22(39), 13976-13984.

Buback, J., Nuernberger, P., Kullmann, M., Langhojer, F., Schmidt, R., Würthner, F., & Brixner, T. (2011). Ring-closure and isomerization capabilities of spiropyran-derived merocyanine isomers. The Journal of Physical Chemistry A, 115(16), 3924-3935.

Costa, R. C. P. da., Nascimento , R. A. B. do ., Melo, D. M. de A. ., Albuquerque, D. S. ., Medeiros, R. L. B. de A. ., Melo, M. A. de F. ., & Adánez, J. (2021). Development of CuO-based oxygen carriers supported on diatomite and kaolin for chemical looping combustion. Research, Society and Development, 10(4), e15110412831.

Fagan, A., Bartkowski, M., & Giordani, S. (2021). Spiropyran-Based Drug Delivery Systems. Frontiers in Chemistry, 612.

Feringa, R., Siebe, H. S., Klement, W. N., Steen, J. D., & Browne, W. R. (2022). Single wavelength colour tuning of spiropyran and dithienylethene based photochromic coatings. Materials Advances, 3(1), 282-289.

Florea, L., McKeon, A., Diamond, D., & Benito-Lopez, F. (2013). Spiropyran polymeric microcapillary coatings for photodetection of solvent polarity. Langmuir, 29(8), 2790-2797.

Galimov, D. I., Tuktarov, A. R., Sabirov, D. S., Khuzin, A. A., & Dzhemilev, U. M. (2019). Reversible luminescence switching of a photochromic fullerene [60]-containing spiropyran. Journal of Photochemistry and Photobiology A: Chemistry, 375, 64-70.

He, J., Yang, Y., Li, Y., He, Z., Chen, Y., Wang, Z., ... & Jiang, G. (2021). Multiple anti-counterfeiting guarantees from simple spiropyran derivatives with solid photochromism and mechanochromism. Cell Reports Physical Science, 2(11), 100643.

Heng, S., Zhang, X., Pei, J., Adwal, A., Reineck, P., Gibson, B. C., ... & Abell, A. D. (2019). Spiropyran‐Based Nanocarrier: A New Zn2+‐Responsive Delivery System with Real‐Time Intracellular Sensing Capabilities. Chemistry–A European Journal, 25(3), 854-862.

Iqbal, A., Iqbal, G., Umar, M. N., ur Rashid, H., & Khan, S. W. (2022). Synthesis of novel silica encapsulated spiropyran-based thermochromic materials. Royal Society open science, 9(3), 211385.

Klajn, R. (2014). Spiropyran-based dynamic materials. Chem. Soc. Rev., 43(1), 148–184.

Kortekaas, L., & Browne, W. R. (2021). Correction: The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev, 50, 2211..

Liu, G., Li, Y., Cui, C., Wang, M., Gao, H., Gao, J., & Wang, J. (2022). Solvatochromic spiropyran-a facile method for visualized, sensitive and selective response of lead (Pb2+) ions in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 424, 113658.

Macuil, R. D., Lopez, M. R., Martinez, M. B. & Pernas, V. C. (2008). ATR‐ FTIR Spectroscopy and their Applications in the Ring‐ Opening Reaction of Spiropyran Polymers. AIP Conference Proceedings, 992: 1237 – 1241

Minkin, V. I. (2004). Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chemical reviews, 104(5), 2751-2776.

Nakatani, K., Piard, J., Yu, P., & Métivier, R. (2016). Introduction: Organic Photochromic Molecules. Photochromic Materials: Preparation, Properties and Applications, 1–45.

Natali, M., Aakeröy, C., Desper, J., & Giordani, S. (2010). The role of metal ions and counterions in the switching behavior of a carboxylic acid functionalized spiropyran. Dalton Transactions, 39(35), 8269-8277.

Nikolaeva, O. G., Tsukanov, A. V., Shepelenko, E. N., Lukyanov, B. S., Metelitsa, A. V., Kostyrina, O. Y., ... & Minkin, V. I. (2009). Synthesis of novel iono-and photochromic spiropyrans derived from 6, 7-dihydroxy-8-formyl-4-methyl-2H-chromene-2-one. International Journal of Photoenergy, 2009.

Nordin, R., Lazim, A. M., Rohadi, A., & Hasbullah, S. A. (2013). Preparation and activation of spiropyran-merocyanine system. Malaysian Journal of Analytical Sciences, 17(3), 422-429.

Preigh, M. J., Stauffer, M. T., Lin, F. T., & Weber, S. G. (1996). Anodic oxidation mechanism of a spiropyran. Journal of the Chemical Society, Faraday Transactions, 92(20), 3991-3996.

Trevino, K. M., Tautges, B. K., Kapre, R., Franco Jr, F. C., Or, V. W., Balmond, E. I., ... & Louie, A. Y. (2021). Highly Sensitive and Selective Spiropyran-Based Sensor for Copper (II) Quantification. ACS omega, 6(16), 10776-10789.

Wang, L., & Li, Q. (2018). Photochromism into nanosystems: towards lighting up the future nanoworld. Chemical Society Reviews, 47(3), 1044-1097.

Wang, Y., Xu, Z., Dai, X., Li, H., Yu, S., & Meng, W. (2019). A New Spiropyran-Based Sensor for Colorimetric and Fluorescent Detection of Divalent Cu2+ and Hg2+ Ions and Trivalent Ce3+, Cr3+ and Al3+ Ions. Journal of Fluorescence.

Wojtyk, J. C., & Kazmaier, P. (1998). Effects of metal ion complexation on the spiropyran–merocyanine interconversion: development of a thermally stable photo-switch. Chemical Communications, (16), 1703-1704.

Xia, H., Xie, K., & Zou, G. (2017). Advances in spiropyrans/spirooxazines and applications based on fluorescence resonance energy transfer (FRET) with fluorescent materials. Molecules, 22(12), 2236.

Zhao, P., Wang, D., Gao, H., Zhang, J., Xing, Y., Yang, Z., ... & He, W. (2019). Third-order nonlinear optical properties of the “clicked” closed-ring spiropyrans. Dyes and Pigments, 162, 451-458.

Zou, W. X., Huang, H. M., Gao, Y., Matsuura, T., & Meng, J. B. (2004). Structures of two spiropyrans in the open and closed form. Structural Chemistry, 15(4), 317-321.

Published

13/04/2022

How to Cite

NASCIMENTO, R. F. F. do .; SILVA FILHO, C. I. da .; RUIZ-CRESPO, A. G.; ALVES JUNIOR, S. Preparation and Characterization of Photo/Ionochromism-Activated Spiropyran-Derived Merocyanines. Research, Society and Development, [S. l.], v. 11, n. 5, p. e53511528661, 2022. DOI: 10.33448/rsd-v11i5.28661. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28661. Acesso em: 21 nov. 2024.

Issue

Section

Exact and Earth Sciences