Cyanolichen research: a bibliometric analysis from 1991 to 2022
DOI:
https://doi.org/10.33448/rsd-v11i6.28764Keywords:
Lichen-forming fungi; Cyanobacteria; ISI Web of Science; Text mining; Information System Teaching.Abstract
In the present study, a bibliometric analysis was carried out on cyanolichens, using the ISI Web of Science (WoS) as a database. A total of 244 documents were retrieved, published in the period from 1991 to 2022, and 79 studies published from 2016 to 2022. Considering the entire period analyzed, there was an increase in studies with cyanolichens, with 2013 being the most productive year (21 studies), followed by 2019 (18). The studies were carried out by scientists from 47 countries, with the US, Canada, Germany, Norway and Sweden as the most productive. The bibliometric network of keywords was grouped into four classes: the first and most isolated included taxonomy, evolution and selectivity of symbiotic partners, while the other three classes were associated with ecology, physiology, diversity and conservation of cyanolichens, the latter arranged in a closer relationship, showing that these aspects are often studied together. Analyzing only the period from 2016 to 2022, most of the studies cited show a growing interest in studying nitrogen fixation, functional ecology, associated microbiota and macroevolution of cyanolichens. The bibliometric analysis was effective in demonstrating the state of the art of the study of cyanolichens in a global context, and highlighted the main topics of interest to the scientific community, as well as the countries, researchers, studies and journals that stood out.
References
Abas, A. (2021). A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress and challenges. Ecological Indicators, 121, 107197. https://doi.org/https://doi.org/10.1016/j.ecolind.2020.107197
Adams, D. G., Duggan, P. S., & Jackson, O. (2012). Cyanobacterial Symbioses BT - Ecology of Cyanobacteria II: Their Diversity in Space and Time (B. A. Whitton (ed.); pp. 593–647). Springer Netherlands. https://doi.org/10.1007/978-94-007-3855-3_23
Almendras, K., García, J., Carú, M., & Orlando, J. (2018). Nitrogen-fixing bacteria associated with Peltigera cyanolichens and Cladonia chlorolichens. Molecules, 23(12), 3077.
Aragón, G., Martínez, I., Izquierdo, P., Belinchón, R., & Escudero, A. (2010). Effects of forest management on epiphytic lichen diversity in Mediterranean forests. Applied Vegetation Science, 13(2), 183–194. https://doi.org/https://doi.org/10.1111/j.1654-109X.2009.01060.x
Bargagli, R., & Mikhailova, I. (2002). Accumulation of Inorganic Contaminants. Monitoring with Lichens — Monitoring Lichens, 65–84. https://doi.org/10.1007/978-94-010-0423-7_6
Bellenger, J. P., Darnajoux, R., Zhang, X., & Kraepiel, A. M. L. (2020). Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review. Biogeochemistry, 149(1), 53–73. https://doi:10.1007/s10533-020-00666-7
Belinchón, R., Yahr, R., & Ellis, C. J. (2015). Interactions among species with contrasting dispersal modes explain distributions for epiphytic lichens. Ecography, 38(8), 762–768. https://doi.org/https://doi.org/10.1111/ecog.01258
Belnap, J., & Harper, K. T. (1995). Influence of cryptobiotic soil crusts on elemental content of tissue of two desert seed plants. Arid Soil Research and Rehabilitation, 9(2), 107–115. https://doi.org/10.1080/15324989509385879
Benítez, A., Aragón, G., González, Y., & Prieto, M. (2018). Functional traits of epiphytic lichens in response to forest disturbance and as predictors of total richness and diversity. Ecological Indicators, 86, 18–26. https://doi.org/https://doi.org/10.1016/j.ecolind.2017.12.021
Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K. I., Salisch, M., Reisser, W., & Weber, B. (2009). Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microbial Ecology, 57(2), 229–247. https://doi.org/10.1007/s00248-008-9449-9
Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P., & Oquist, G. (1998). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and Molecular Biology Reviews : MMBR, 62(3), 667–683. https://doi.org/10.1128/MMBR.62.3.667-683.1998
Cardós, J. L. H., Martínez, I., Calvo, V., & Aragón, G. (2016). Epiphyte communities in Mediterranean fragmented forests: importance of the fragment size and the surrounding matrix. Landscape Ecology, 31(9), 1975–1995. https://doi.org/10.1007/s10980-016-0375-9
Carvalho Neta, R. N. F., Sousa, D. B. P., Barros, M. F. de S., Nunes, K. B., Torres, H. S., Assis, E. B. V., Farias, L. F., & Turri, R. de J. G. (2021). Potential uses of essential oils in environmental remediation: A review. Research, Society and Development, 10(7), e3210716146. https://doi.org/10.33448/rsd-v10i7.16146
Chagnon, P.-L., Magain, N., Miadlikowska, J., & Lutzoni, F. (2019). Species diversification and phylogenetically constrained symbiont switching generated high modularity in the lichen genus Peltigera. Journal of Ecology, 107(4), 1645–1661. https://doi.org/https://doi.org/10.1111/1365-2745.13207
Chagnon, P. L., Magain, N., Miadlikowska, J., & Lutzoni, F. (2018). Strong specificity and network modularity at a very fine phylogenetic scale in the lichen genus Peltigera. Oecologia, 187(3), 767–782. https://doi.org/10.1007/s00442-018-4159-6
Darnajoux, R., Constantin, J., Miadlikowska, J., Lutzoni, F., & Bellenger, J. (2014). Is vanadium a biometal for boreal cyanolichens? New Phytologist, 202(3), 765–771.
Darnajoux, R., Magain, N., Renaudin, M., Lutzoni, F., Bellenger, J.-P., & Zhang, X. (2019). Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests. Proceedings of the National Academy of Sciences, 116(49), 24682–24688. https://doi.org/10.1073/pnas.1913314116
Darnajoux, R., Zhang, X., McRose, D. L., Miadlikowska, J., Lutzoni, F., Kraepiel, A. M. L., & Bellenger, J. P. (2017). Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current biological nitrogen fixation estimates. New Phytologist, 213(2), 680–689.
Fernandes, T., Hacon, S. de S., Novais, J. W. Z., Sguarezi, S. B., da Silva, C. J., Alcântara, L. C. S., Curvo, A. D., & Fernandes, T. (2019). Air pollution and effects on the health of children in the Amazon region of para: a bibliometric Analysis. Research, Society and Development, 8(4), e4984907. https://doi.org/10.33448/rsd-v8i4.907
Flores-Gomes, G., Lopes, R. F. ., Oliveira, V. de, & Vagetti, G. C. (2022). Health Education for the Elderly: a bibliometric review of scientific production from 2017 to 2021. Research, Society and Development, 11(3), e43911326884. https://doi.org/10.33448/rsd-v11i3.26884
Golovko, T. K., Shelyakin, M. A., & Pystina, T. N. (2020). Ecological and biological, and functional traits of lichens in Taiga zone of European Northeast of Russia. Theoretical and Applied Ecology, 1, 6.
Grube, M., Cardinale, M., de Castro, J. V., Müller, H., & Berg, G. (2009). Species-specific structural and functional diversity of bacterial communities in lichen symbioses. The ISME Journal, 3(9), 1105–1115. https://doi.org/10.1038/ismej.2009.63
Grube, M., Cernava, T., Soh, J., Fuchs, S., Aschenbrenner, I., Lassek, C., Wegner, U., Becher, D., Riedel, K., Sensen, C. W., & Berg, G. (2015). Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. The ISME Journal, 9(2), 412–424. https://doi.org/10.1038/ismej.2014.138
Gustafsson, J. P. (2019). Vanadium geochemistry in the biogeosphere –speciation, solid-solution interactions, and ecotoxicity. Applied Geochemistry, 102, 1–25. https://doi.org/https://doi.org/10.1016/j.apgeochem.2018.12.027
Harper, K. T., & Belnap, J. (2001). The influence of biological soil crusts on mineral uptake by associated vascular plants. Journal of Arid Environments, 47(3), 347–357. https://doi.org/10.1006/jare.2000.0713
Harper, K. T., & Pendleton, R. L. (1993). Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants? The Great Basin Naturalist, 59–72.
Hawksworth, D. L., & Lücking, R. (2017). Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiology Spectrum, 5(4). https://doi.org/10.1128/microbiolspec.FUNK-0052-2016
Hedenås, H., & Ericson, L. (2000). Epiphytic macrolichens as conservation indicators: successional sequence in Populus tremula stands. Biological Conservation, 93(1), 43–53. https://doi.org/https://doi.org/10.1016/S0006-3207(99)00113-5
Hodkinson, B. P., Gottel, N. R., Schadt, C. W., & Lutzoni, F. (2012). Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environmental Microbiology, 14(1), 147–161. https://doi.org/10.1111/j.1462-2920.2011.02560.x
Jönsson, M. T., Ruete, A., Kellner, O., Gunnarsson, U., & Snäll, T. (2017). Will forest conservation areas protect functionally important diversity of fungi and lichens over time? Biodiversity and Conservation, 26(11), 2547–2567. https://doi.org/10.1007/s10531-015-1035-0
Jüriado, I., Kaasalainen, U., Jylhä, M., & Rikkinen, J. (2019). Relationships between mycobiont identity, photobiont specificity and ecological preferences in the lichen genus Peltigera (Ascomycota) in Estonia (northeastern Europe). Fungal Ecology, 39, 45–54. https://doi.org/https://doi.org/10.1016/j.funeco.2018.11.005
Kaasalainen, U., Tuovinen, V., Mwachala, G., Pellikka, P., & Rikkinen, J. (2021). Complex Interaction Networks Among Cyanolichens of a Tropical Biodiversity Hotspot. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.672333
Koch, N. M., Matos, P., Branquinho, C., Pinho, P., Lucheta, F., Martins, S. M. de A., & Vargas, V. M. F. (2019). Selecting lichen functional traits as ecological indicators of the effects of urban environment. Science of The Total Environment, 654, 705–713. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.11.107
Leiva, D., Clavero-León, C., Carú, M., & Orlando, J. (2016). Intrinsic factors of Peltigera lichens influence the structure of the associated soil bacterial microbiota. FEMS Microbiology Ecology, 92(11), fiw178. https://doi.org/10.1093/femsec/fiw178
Leiva, D., Fernández-Mendoza, F., Acevedo, J., Carú, M., Grube, M., & Orlando, J. (2021). The Bacterial Community of the Foliose Macro-lichen Peltigera frigida Is More than a Mere Extension of the Microbiota of the Subjacent Substrate. Microbial Ecology, 81(4), 965–976. https://doi.org/10.1007/s00248-020-01662-y
Liu, X., Zhang, L., & Hong, S. (2011). Global biodiversity research during 1900-2009: A bibliometric analysis. Biodiversity and Conservation, 20(4), 807–826. https://doi.org/10.1007/s10531-010-9981-z
Lu, J., Magain, N., Miadlikowska, J., Coyle, J. R., Truong, C., & Lutzoni, F. (2018). Bioclimatic factors at an intrabiome scale are more limiting than cyanobiont availability for the lichen-forming genus Peltigera. American Journal of Botany, 105(7), 1198–1211. https://doi.org/10.1002/ajb2.1119
Magain, N., Miadlikowska, J., Goffinet, B., Sérusiaux, E., & Lutzoni, F. (2017). Macroevolution of Specificity in Cyanolichens of the Genus Peltigera Section Polydactylon (Lecanoromycetes, Ascomycota). Systematic Biology, 66(1), 74–99. https://doi.org/10.1093/sysbio/syw065
Martín-Martín, A., Thelwall, M., Orduna-Malea, E., & Delgado López-Cózar, E. (2021). Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations. Scientometrics, 126(1), 871–906. https://doi.org/10.1007/s11192-020-03690-4
Matos, P., Pinho, P., Aragón, G., Martínez, I., Nunes, A., Soares, A. M. V. M., & Branquinho, C. (2015). Lichen traits responding to aridity. Journal of Ecology, 103(2), 451–458. https://doi.org/https://doi.org/10.1111/1365-2745.12364
McCune, B. (1993). Gradients in Epiphyte Biomass in Three Pseudotsuga-Tsuga Forests of Different Ages in Western Oregon and Washington. The Bryologist, 96(3), 405–411. https://doi.org/10.2307/3243870
Menge, D. N. L., & Hedin, L. O. (2009). Nitrogen fixation in different biogeochemical niches along a 120 000-year chronosequence in New Zealand. Ecology, 90(8), 2190–2201. https://doi.org/10.1890/08-0877.1
Neitlich, P. N., & McCune, B. (1997). Sitios criticos de diversidad de liquenes epifitos en dos bosques jovenes bajo manejo. Conservation Biology, 11(1), 172–182. https://doi.org/10.1046/j.1523-1739.1997.95492.x
Nimis, P. L., Martellos, S., Chiarucci, A., Ongaro, S., Peplis, M., Pittao, E., & Nascimbene, J. (2020). Exploring the relationships between ecology and species traits in cyanolichens: A case study on Italy. Fungal Ecology, 47, 100950.
Otálora, M. A. G., Salvador, C., Martínez, I., & Aragón, G. (2013). Does the reproductive strategy affect the transmission and genetic diversity of bionts in cyanolichens? A case study using two closely related species. Microbial Ecology, 65(2), 517–530.
Peck, J. E., & McCune, B. (1997). Remnant trees and canopy lichen communities in western Oregon: A retrospective approach. Ecological Applications, 7(4), 1181–1187. https://doi.org/10.1890/1051-0761(1997)007[1181:RTACLC]2.0.CO;2
Phinney, N. H., Ellis, C. J., & Asplund, J. (2022). Trait-based response of lichens to large-scale patterns of climate and forest availability in Norway. Journal of Biogeography, 49(2), 286–298. https://doi.org/https://doi.org/10.1111/jbi.14297
Ramírez-Fernández, L., Zúñiga, C., Méndez, M. A., Carú, M., & Orlando, J. (2013). Genetic diversity of terricolous Peltigera cyanolichen communities in different conservation states of native forest from southern Chile. International Microbiology : The Official Journal of the Spanish Society for Microbiology, 16(4), 243–252. https://doi.org/10.2436/20.1501.01.200
Rikkinen, J. (2013). Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys, 6, 3–32. https://doi.org/10.3897/mycokeys.6.3869
Rikkinen, J. (2015). Cyanolichens. Biodiversity and Conservation, 24(4), 973–993. https://doi.org/10.1007/s10531-015-0906-8
Svensson, M., Caruso, A., Yahr, R., Ellis, C., Thor, G., & Snäll, T. (2016). Combined observational and experimental data provide limited support for facilitation in lichens. Oikos, 125(2), 278–283. https://doi.org/https://doi.org/10.1111/oik.02279
Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.
West, N. J., Parrot, D., Fayet, C., Grube, M., Tomasi, S., & Suzuki, M. T. (2018). Marine cyanolichens from different littoral zones are associated with distinct bacterial communities. PeerJ, 6, e5208. https://doi.org/10.7717/peerj.5208
Yoshimura, I., & Yamamoto, Y. (1991). Development of Peltigera-Praetextata Lichen Thalli in Culture. Symbiosis, 11(2–3), 109–117.
Zhang, X., McRose, D. L., Darnajoux, R., Bellenger, J. P., Morel, F. M. M., & Kraepiel, A. M. L. (2016). Alternative nitrogenase activity in the environment and nitrogen cycle implications. Biogeochemistry, 127(2), 189–198. https://doi.org/10.1007/s10533-016-0188-6
Zúñiga, C., Leiva, D., Carú, M., & Orlando, J. (2017). Substrates of Peltigera Lichens as a Potential Source of Cyanobionts. Microbial Ecology, 74(3), 561–569. https://doi.org/10.1007/s00248-017-0969-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Mayara Camila Scur; Marcos Junji Kitaura; Rogério Rodrigues Faria
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.