An innovate approach of fungal pigments as inducing the oxidase activity applied to bioelectrode systems

Authors

DOI:

https://doi.org/10.33448/rsd-v11i6.28799

Keywords:

Biofuel cell; Oxidases; Fungal pigment; Caatinga soil.

Abstract

The use of enzymes as part of bioelectrodes in Biofuel Cells (BFC) has been studied more often every day, aiming to reduce the operational and manufacturing high costs due in part to the use of metallic conventional catalyst. The in-situ production of biocatalysts can reduce even further these costs. However, some biocatalysts need the supplementation of external electrochemical mediators to achieve good coulombic efficiencies when these are used attached to bioelectrodes. In this work, two filamentous fungi were isolated from the soil of the Brazilian Caatinga Biome, that showed high oxidase activity in media containing two synthetic electronic shuttles, compared with four natural fungal pigments. Parameters such as substrate consumption, oxidase activity and microbial growth were evaluated. As was observed, all natural mediator pigments induced the enzyme production, observing an increase on enzyme production of more than 50% especially in two of them.

Author Biographies

Paulo Henrique da Silva, Federal Rural University of Pernambuco

Network  in Biotechnology -Doctorate RENORBIO

Kyriale Vasconcelos Morant, São Paulo University

Pós-graduation Master course.

Raphael Fonseca do Nascimento, Catholic University of Pernambuco

Chemical Enginerring Course

References

Chowdhury, A., Biswas, S., Singh, T., & Chandra, A. (2022). Redox mediator induced electrochemical reactions at the electrode‐electrolyte interface: Making sodium‐ion supercapacitors a competitive technology. Electrochemical Science Advances, 2 (1), e2100030. https://doi.org/10.1002/elsa.202100030

Da Silva, P. H. Morant, K. V. Takaki, G.M.C. & La Rotta, C. E. (2015) Comparação do efeito de pigmentos de origem fúngica e corantes comumente usados como mediadores eletroquímicos sobre o crescimento microbiano e a atividade oxidasica de Rhizopus microsporus var. microsporus. Blucher Chemical Engineering Proceedings, 1(2), 540-547. https://doi.org/10.5151/chemeng-cobeq2014-0377-25775-180344

Da Silva, P. H. Morant, K. V. La Rotta, C. E. & Takaki, G. M. C. (2014[a]). Study of the effect of fungi pigments in the metabolism of Penicillium sp. Hechos Microbiológicos, 5(2), 251.

Da Silva, P. H. Morant, K. V. Takaki, G. M. C. & La Rotta, C. E. (2014 [b]). Production of electrogenic pigments from new fungal sources applied as electron shuttles in biofuel cells. Industrial, Medical and Environmental applications of microorganisms: current status and trend. 476-481. https://doi.org/10.3920/978-90-8686-795-0

Di Noto, V., Pagot, G., Negro, E., Vezzù, K., Kulesza, P. J., Rutkowska, I. A., & Pace, G. (2022). A formalism to compare electrocatalysts for the oxygen reduction reaction by cyclic voltammetry with the thin-film rotating ring-disk electrode measurements. Current Opinion in Electrochemistry, 31, 100839. https://doi.org/10.1016/j.coelec.2021.100839

Martínez, A. A., Chendake, A. D., Pandit, S., & Pant, D. (2021) Modeling and optimization strategies towards performance enhancement of microbial fuel cells. Bioresource Technology, 320, 124256. https://doi.org/10.1016/j.biortech.2020.124256

La Rotta C. E., Ciniciato G., & González E. R. (2011). Triphenylmethane dyes, an alternative for mediated electronic transfer systems in glucose oxidase biofuel cells. Enz. Microb. Technol, 48, (6), 487-497.

La Rotta, C. E. Leite, A. L. Peres, R. S. Dantas, P. V. & Takaki, G. M. C. (2014[a]). Hybrid Microbial-Photosynthetic Biofuel Cells for Simultaneous Bacterial Glycerol Biotransformation and Algal Carbon Dioxide Capture. J. Braz. Chem. Soc., 25, No. 3, 560-571. https://doi.org/10.1016/j.enzmictec.2011.02.003

La Rotta, C. E. Morant, K. V. Da Silva, P. H. & Takaki, G. M. C. (2014[b]). Electrochemical Characterization of electroactive Biomolecules Isolated from Novel Fungal Sources Applied in Bioelectrodes for Microbial Fuel Cell. Meeting Abstracts. The Electrochemical Society. (22), 1314-1314.

Mashkour, M., Rahimnejad, M., Raouf, F., & Navidjouy, N. (2021). A review on the application of nanomaterials in improving microbial fuel cells. Biofuel Research Journal, 8. (2), 1400-1416. https://dx.doi.org/10.18331/BRJ2021.8.2.5

Morant, K. V. Da Silva, P. H. Takaki, G. M. C. & La Rotta, C. E. (2015). Aplicação in-situ de uma nova fonte de enzimas oxidásicas fúngicas na geração de energia em bio-cátodos para célula a combustível. Blucher Chemical Engineering Proceedings. 1(2), 548-555.

Morant, K. V. Da Silva, P. H. Takaki, G. M. C. & La Rotta, C. E. (2014[a]). Isolation and bioelectrochemical characterization of novel fungalsources with oxidasic activity applied in situ for the cathodicoxygen reduction in microbial fuel cells. Enzyme and Microbial Technology, 66. 20-27. https://doi.org/10.1016/j.enzmictec.2014.07.007

Morant, K. V. Da Silva, P. H. Takaki, G. M. C. & La Rotta, C. E. (2014[b]). Screening for new fungi with oxidasic activity applied in-situ as biocatalysts for biofuel cells. V International Conference on Environmental, Industrial and Applied Microbiology, BioMicroWorld2013. 704.

Sharma, Sunanda; Meyer, Vera. (2022). The colors of life: an interdisciplinary artist-in-residence project to research fungal pigments as a gateway to empathy and understanding of microbial life. Fungal Biology and Biotechnology. 9(1), 1-11. https://doi.org/10.1186/s40694-021-00130-7

Sorrentino, I., Carrière, M., Jamet, H., Stanzione, I., Piscitelli, A., Giardina, P., & Le Goff, A. (2022). The laccase mediator system at carbon nanotubes for anthracene oxidation and femtomolar electrochemical biosensing. Analyst. 147(5), 897-904. https://doi.org/10.1039/D1AN02091A

Triana, B. E. G. Pino, R. P. Sosa, V. R. Bernabeu, C. A. S. Piñeiro, J. C. G. (2005). Efecto del Vimang Sobre la Actividad Serica de Enzimas Antioxidantes en la Periodontitis Experimental. Instituto Superior de Ciencias Médicas de la Habana. Revista Habanera de Ciencias Médicas, 4(3).

Wang, H. W., Bringans, C., Hickey, A. J., Windsor, J. A., Kilmartin, P. A., & Phillips, A. R. (2021). Cyclic Voltammetry in Biological Samples: A Systematic Review of Methods and Techniques Applicable to Clinical Settings. Signals, 2(1), 138-158. https://doi.org/10.3390/signals2010012

Wu, K., Shi, M., Pan, X., Zhang, J., Zhang, X., Shen, T., & Tian, Y. (2022). Decolourization and biodegradation of methylene blue dye by a ligninolytic enzyme-producing Bacillus thuringiensis: Degradation products and pathway. Enzyme and Microbial Technology, 156, 109999. https://doi.org/10.1016/j.enzmictec.2022.109999

Viswanath, B. Chandra, M. S. Pallavi, H. & Reddy B. R. (2008). Screening adnd assessment of laccase producing fungi isolated from different environmental samples. African Journal of Biotechnology, 7 (8), 1129-1133.

Zhou Y., & Liu J. (2010). Pigments of fungi (macromycetes). Natural product reports, 27 (11), 1531-1570. https://doi.org/10.1039/C004593D

Downloads

Published

24/04/2022

How to Cite

SILVA, P. H. da .; MORANT, K. V.; NASCIMENTO, R. F. do; CAMPOS-TAKAKI, G. M. de. An innovate approach of fungal pigments as inducing the oxidase activity applied to bioelectrode systems. Research, Society and Development, [S. l.], v. 11, n. 6, p. e16711628799, 2022. DOI: 10.33448/rsd-v11i6.28799. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28799. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings