Classification of Sky Cover by the Clearness Index (Kt) in Maputo - Mozambique

Authors

DOI:

https://doi.org/10.33448/rsd-v11i6.28887

Keywords:

Cloudiness; City of Maputo; Clearness Index.

Abstract

The present paper makes an analysis of the frequency of sky conditions in the city of Maputo/Mozambique based on the clearness index (Kt). From the determination of extraterrestrial solar radiation and measured data of four years of global daily radiation, Kt was calculated. Different sky conditions were classified according to the Escobedo criterion, which dispenses the data of direct and / or diffuse radiation in its classification. The city of Maputo, during the year, is observed more days with conditions of clear sky, in average of 120 days. And for cloudy sky conditions, the city of Maputo presents the least number of days, with an average of 48 days. The frequency of days for partially cloudy sky and partially clear sky conditions is 85 and 112 days respectively. The information generated in this paper can be used in future studies to project solar systems for thermal use or direct conversion of solar radiation into electricity.

References

Aler. (2017). Energias renováveis em Moçambique: Relatório Nacional do ponto de situação. (2a ed.), ALER – Associação Lusófona de Energias Renováveis.

Almorox, J., & Hontoria, C. (2004). Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45, 1529-1535. 10.1016/j.enconman.2003.08.022

Alves, M., Sanches, L., Nogueira, J., & Silva, V. (2013). Effects of Sky Conditions Measured by the Clearness Index on the Estimation of Solar Radiation Using a Digital Elevation Model. Atmospheric and Climate Sciences, 3 (4), 618-626. 10.4236/acs.2013.34064

Bosch, J. L., Zheng, Y., & Kleissl J. (2013). Deriving cloud velocity from an array of solar radiation measurements. Solar Energy, 87, 196-203. 10.1016/j.solener.2012.10.020

Calca, M. V. C.; Raniero, M. R.; Anacleto, K. B.; Franco, J. R.; Dal Pai, A.; Caneppele, F. De L. A perspective on thermal application and the direct conversion of solar energy in rural areas in Brazil. Research, Society and Development, 10(6), e9810615610, 2021.

Dal Pai, A., Escobedo, J. F., Dal Pai, E., De Oliveira, A. P., Soares, J. R., & Codato, G. (2016). MEO shadowring method for measuring diffuse solar irradiance: Corrections based on sky cover. Renewable Energy, 99, 754-76. 10.1016/j.renene.2016.07.026

Dal Pai, E. (2021). Effect of sky cover on CO2 assimilation. Research, Society and Development, 10 (3), p. e342101321307. 10.33448/rsd-v10i13.21307

De Souza, J. L., Nicácio, R. M., & Moura, M. A. L. (2005). Global solar radiation measurements in Maceió, Brazil. Renewable Energy, 30, 1203-1220. 10.1016/j.renene.2004.09.013

Dumas, A., Andrisani, A., Bonnici, M., Graditi, G., Leanza, G., Madonia, M., & Trancossi, M. (2015). A new correlation between global solar energy radiation and daily temperature variations. Solar Energy, 116, 117-124. 10.1016/j.solener.2015.04.002

Escobedo, J. F., Gomes, E. N., Oliveira, A. P., & Soares, J. (2009). Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil. Applied Energy, 86, 299-309. 10.1016/j.apenergy.2008.04.013

Iqbal, M. (1983). An Introduction to Solar Radiation. Ontario: Academic Press Canada.

Khorasanizadeh, H., & Mohammadi, K. (2016). Diffuse solar radiation on a horizontal surface: Reviewing and categorizing the empirical models. Renewable and Sustainable Energy Reviews, 53, 338-362. 10.1016/j.rser.2015.08.037

Li, D., Ju, W., Lu, D., Zhou, Y., & Wang, H. (2015). Impact of estimated solar radiation on gross primary productivity simulation in subtropical plantation in southeast China. Solar Energy, 120, 175-186. 10.1016/j.solener.2015.07.033

Liu, B. Y. H., & Jordan, R. C. (1960). The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy, 3, 1-19. 10.1016/0038-092X(60)90062-1

Ometto, J. C. (1981). Bioclimatologia vegetal. São Paulo: Agronômica Ceres.

Poudyal, K., Bhattarai, B., Sapkota B., & Kjeldstad, B. (2012). Estimation of Global Solar Radiation Using Clearness Index and Cloud Transmittance Factor at Trans-Himalayan Region in Nepal. Energy and Power Engineering, 4 (6), 415-421. 10.4236/epe.2012.46055

Quej, V. H., Almorox, J., Ibrakhimov, M., & Saito, L. (2016). Empirical models for estimating daily global solar radiation in Yucatán Peninsula, Mexico. Energy Conversion and Management, 110, 448-456. 10.1016/j.enconman.2015.12.050

Smith, C. J., Bright, J. M., & Crook, R. (2017). Cloud cover effect of clear-sky index distributions and differences between human and automatic cloud observations. Solar Energy, 144, 10-21. 10.1016/j.solener.2016.12.055

Weather Spark. Condições meteorológicas de Natal. https://pt.weatherspark.com/y/97168/Clima-caracter%C3%ADstico-em-Maputo-Mo%C3%A7ambique-durante-o-ano.

Yao, W., Li, Z., Wang, Y., Jiang, F., & Hu, L. (2014). Evaluation of global solar radiation models for Shanghai, China. Energy Conversion and Management, 84, 597-612. 10.1016/j.enconman.2014.04.017

Downloads

Published

25/04/2022

How to Cite

FERNANDO, D. M. Z.; CALÇA, M. V. C. .; NORIS, F. J.; RANIERO, M. R. .; DAL PAI, A. . Classification of Sky Cover by the Clearness Index (Kt) in Maputo - Mozambique . Research, Society and Development, [S. l.], v. 11, n. 6, p. e20611628887, 2022. DOI: 10.33448/rsd-v11i6.28887. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28887. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences