PI controller implementation for the two wheels of a differential robot using NI MyRio

Authors

DOI:

https://doi.org/10.33448/rsd-v11i6.28925

Keywords:

Mobile robotics; Trajectory controller; ROS; LabVIEW; AMCL; Robotics teaching.

Abstract

Introduction. This article proposes a navigation architecture for non-holonomic mobile robots for known positions on the navigation map. This architecture can plan a path from the current point to the destination. Navigation is ensured by the move_base controller package of Robot Operating System (ROS) that guides the robot in the predetermined trajectory. Objectives. This article shows the navigation of a non-holonomic robot using (Adaptive Monte Carlo Localization) AMCL algorithm and ROS for educational and development purposes. Methodology. The developed control is compatible with ROS and some examples are shown using a differential robot developed at the Federal Institute of Espirito Santo. The encoders, wheel and robot speed controllers are read in an embedded NI-MyRio system, which is programmed using LabVIEW. ROS is installed on a Linux ODROID minicomputer, which is part of the robot and is connected via Ethernet to a LiDAR laser sensor and to the NI-MyRio. ROS ability to work in a network environment allows control and supervision of devices through computer network. Results. It was possible to perform the navigation of the mobile robot, making it reach the desired final location. Within the experiments, it was possible to prove the functionality of the AMCL algorithm and the proposed architecture. Conclusion. Through the tests performed with the robot, it was possible to conclude that the navigation objective was successfully completed, validating the system and the applicability of the AMCL algorithm.

References

Ayres, L. M., Batista, L. G., da Silva, J. R., Motta, V. da R., Marques, V. M., & Cuadros, M. A. S. L. (2017, October 4). Desenvolvimento e implementação de uma arquitetura de navegação para um robô móvel utilizando comandos de voz, algoritmo A* e o controlador backstepping. XIII Simpósio Brasileiro de Automação Inteligente - SBAI.

Ben-Ari, M., & Mondada, F. (2018). Elements of Robotics. In Elements of Robotics (1st ed.). Springer International Publishing. https://doi.org/10.1007/978-3-319-62533-1

Bezerra, C. G. (2004). Localização de um robô móvel usando odometria e marcos naturais. Universidade Federal do Rio Grande do Norte. https://repositorio.ufrn.br/jspui/handle/123456789/15411

Chen, S.-M., HSU, Y.-S., & PEARN, W. L. (2003). Capability measures for m -dependent stationary processes. Statistics: A Journal of Theoretical and Applied Statistics, 37(1), 1–24. https://doi.org/10.1080/02331880309257

Chong, K. S., & Kleeman, L. (1997). Accurate odometry and error modelling for a mobile robot. Proceedings of International Conference on Robotics and Automation, 4, 2783–2788. https://doi.org/10.1109/ROBOT.1997.606708

da Silva, J. R., de Freitas, B. P. S., Medeiros, M. G., & Cuadros, M. A. D. S. L. (2016, September 27). desenvolvimento de um sistema de localização indoor utilizando a intensidade do sinal de rádio frequência de módulos bluetooth ®. XLIV Congresso Brasileiro de Educação Em Engenharia.

Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999). Monte Carlo localization for mobile robots. In IEEE (Ed.), Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C) (Vol. 2, Issues 1–2, pp. 1322–1328). IEEE. https://doi.org/10.1109/ROBOT.1999.772544

Eppstein, E. M. (2020, September 3). Move_base. ROS. http://wiki.ros.org/move_base

Estefo, P., Simmonds, J., Robbes, R., & Fabry, J. (2019). The Robot Operating System: Package reuse and community dynamics. Journal of Systems and Software. https://doi.org/10.1016/j.jss.2019.02.024

Fairchild, C., & Harman, T. L. (2017). ROS robotics by example: learning to control wheeled, limbed, and flying robots using ROS Kinetic Kame (2nd ed., Vol. 1). Packt Publishing.

Faisal, M., Hedjar, R., al Sulaiman, M., & Al-Mutib, K. (2013). Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment. International Journal of Advanced Robotic Systems, 10(October). https://doi.org/10.5772/54427

Faria, G., & Romero, R. A. F. (2002). Navegação de robôs móveis utilizando aprendizado por reforço e lógica fuzzi. In Sba: Controle & Automação Sociedade Brasileira de Automática (Vol. 13, Issue 3, pp. 219–230). https://doi.org/10.1590/S0103-17592002000300002

Fortes, L. L. S. (2018). Implementação de um filtro de partículas para localização de um robô. Instituto Federal do Espírito Santo.

Fox, D. (2003). Adapting the sample size in particle filters through KLD-sampling. International Journal of Robotics Research, 22(12), 985–1003. https://doi.org/10.1177/0278364903022012001

Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics and Automation Magazine, 4(1), 23–33. https://doi.org/10.1109/100.580977

Fox, D., Burgard, W., & Thrun, S. (1999). Markov localization for mobile robots in dynamic environments. Journal of Artificial Intelligence Research, 11, 391–427. https://doi.org/10.1613/jair.616

Gamarra, D. F. T., Legg, A. P., de Souza Leite Cuadros, M. A., & da Silva, E. S. (2019). Sensory integration of a mobile robot using the embedded system odroid-XU4 and ROS. Proceedings - 2019 Latin American Robotics Symposium, 2019 Brazilian Symposium on Robotics and 2019 Workshop on Robotics in Education, LARS/SBR/WRE 2019, 198–203. https://doi.org/10.1109/LARS-SBR-WRE48964.2019.00042

Gerkey, B. P. (2020, August 27). AMCL. ROS. http://wiki.ros.org/amcl

Gouveia, M. C. M. (2008). Estudo e implementação de um algoritmo de localização baseado na correspondência de mapas. Universidade do Porto.

Joseph, L. (2017). ROS robotics projects (1st ed., Vol. 1). Packt. https://www.packtpub.com/product/ros-robotics-projects/9781783554713

Meeussen, W. (2010, October 27). Coordinate frames for mobile platforms. ROS. https://www.ros.org/reps/rep-0105.html

Nemec, D., Šimák, V., Janota, A., Hruboš, M., & Bubeníková, E. (2019). Precise localization of the mobile wheeled robot using sensor fusion of odometry, visual artificial landmarks and inertial sensors. Robotics and Autonomous Systems. https://doi.org/10.1016/j.robot.2018.11.019

Oliveira, R. do A. (2021a, April 16). AMCL com Robô 1 (pp. 1–1). GAIn. https://youtu.be/MRgpewObNQI

Oliveira, R. do A. (2021b, April 16). Odometria do Robô 1 (pp. 1–1). GAIn. https://www.youtube.com/watch?v=T2LpuR6EFcY

Paiva, B., de Freitas, S., Medeiros, M. G., Ruella Da Silva, J., Maia De Almeida, G., Antonio De Souza, M., & Cuadros, L. (2016). Utilização de exemplos criados no software labview ® implementados no starter kit 2.0 como ferramenta no ensino-aprendizagem da robótica. XLIV Congresso Brasileiro de Educação Em Engenharia (COBENGE), 1.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). ROS: an open-source Robot Operating System. ICRA Workshop on Open Source Software, 6.

Romero, R. A. F., Silva Junior, E. P. e, Osório, F. S., & Wolf, D. F. (2014). Robótica móvel (1st ed., Vol. 1). LTC.

ROS. (2015, September 11). AMCL parameters. ROS. https://answers.ros.org/question/217462/amcl-parameters-spreading-out-is-good-or-bad/

ROS. (2019). Documentation. ROS. http://wiki.ros.org/

Salarolli, P. F., Da, V., Motta, R., De, M. A., & Cuadros, S. L. (2017). Fusão dos dados do Dead Reckoning e do giroscópio usando o filtro de Kalman estendido aplicado à localização de uma cadeira de rodas motorizada. XIII Simpósio Brasileiro de Automação Inteligente - SBAI, 1571–1576.

Tellez, R. (2019). A history of ROS. The Construct. https://www.theconstructsim.com/history-ros/

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics (1st ed., Vol. 1). The MIT Press.

Tommasi, E., Faria, H., Cuadros, M., Almeida, G., Resende, C., & Gamarra, D. (2015). Estudo Comparativo de Controladores de Seguimento de Trajetória para Robôs de Tração Diferencial: Fuzzy, Ganhos Fixos e Backstepping. XII Simpósio Brasileiro de Automação Inteligente (SBAI), 1–6.

Zaman, S., Slany, W., & Steinbauer, G. (2011). ROS-based mapping, localization and autonomous navigation using a Pioneer 3-DX robot and their relevant issues. 2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC), 1–5. https://doi.org/10.1109/SIECPC.2011.5876943

Published

26/04/2022

How to Cite

OLIVEIRA, R. do A. .; CUADROS, M. A. de S. L. .; VALADÃO, C. T. . PI controller implementation for the two wheels of a differential robot using NI MyRio. Research, Society and Development, [S. l.], v. 11, n. 6, p. e23211628925, 2022. DOI: 10.33448/rsd-v11i6.28925. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28925. Acesso em: 25 may. 2022.

Issue

Section

Engineerings