Proposal thermal radiation calculation using software to select equipment to be cooled in case of fire in LPG storage parks

Authors

DOI:

https://doi.org/10.33448/rsd-v9i4.2893

Keywords:

Thermal Radiation; LPG Storage Park; Firefighting System.

Abstract

Industrially, liquefied petroleum gas (LPG) is stored in spherical or cylindrical vessels, which follow strict standards in their construction in order to avoid major accidents, that may be caused by fires and explosions in neighboring equipment, and its main propagator is heat transfer by thermal radiation. If an accident occurs, to prevent further damage, a fire fighting system must be installed. When dimensioning these systems, standards and requirements are followed which indicate prescriptive criteria (fixed distances independents from the storage park conditions) for the selection of equipment to be cooled in case of fire. In order to propose the calculation of thermal radiation impact by using a software and subsequent selection of equipment to be cooled in case of fire in a LPG storage park, a case study was elaborated in this present paper, comparing the indicated in Brazilian and international standards and what was found through simulation. The quantitative research method, descriptive and analytical, was used as data acquisition techniques, bibliographic research, case study analysis and computational tools, using a computer and the ALOHA software as materials. Simulations for different sphere filling and climatic conditions were accomplished, with results that are lower than those proposed in Brazilian standards, and therefore less conservative. The simulation of the thermal radiation radius makes the assessment more reliable considering the conditions to which the LPG spheres are exposed, helping in the most correct dimensioning of the fire fighting network. Therefore, it is concluded that Brazilian standards are more conservative and obsolete in view of the advances in Fire Engineering.

Author Biographies

Rafaela Maria de Sá Telles Martins, Universidade Federal da Bahia

Possui pós-graduação lato sensu em Engenharia de Segurança do Trabalho, pela Escola de Eletromecânica da Bahia (2014) e graduação em Engenharia quimica, pela Universidade Federal da Bahia (2009). Tem experiência na área de Engenharia Processos, com ênfase em projetos e dimensionamento de equipamentos. Mestranda em Engenharia Química na Universidade Federal da Bahia.

Regina Ferreira Vianna, Universidade Federal da Bahia

Professora Titular da Universidade Federal da Bahia (UFBA), PhD pela The University of Leeds, UK (1995), Mestre em Engenharia Química pela UNICAMP, SP, Brasil (1991), Especialista em Processos de Separação, UFBA (1985), Especialista em Engenharia de Processamento Petroquímico, UFBA (1984) e graduada em Engenharia Química, UFBA (1984). Foi Vice-Diretora da Escola Politécnica da UFBA (2014-2018), coordenou o Colegiado do Curso de Engenharia Química (2008-2010), implantou, coordenou e atuou como Assessora da Diretoria Geral no escritório regional da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis na Bahia (2000-2007) e Engenheira de Processos na Nitrofertil (1994-1998). Atualmente é professora no Departamento de Engenharia Química da UFBA e pesquisadora no Programa de Pós-Graduação em Engenharia Química da Universidade Federal da Bahia (PPEQ/UFBA). Desenvolve pesquisas nas áreas de Modelagem e Simulação, controle e otimização de processos, tanto através de métodos convencionais quanto de não convencionais.

References

ALOHA. (2014). US Environmental Protection Agency, National oceanic and atmospheric administration, Version 5.4.7.

American Petroleum Institute. (2011). API 2510: Design and Construction of LPG Installations. Washington : API, 2011.

American Petroleum Institute. (2015). API 2510A: Fire-Protection Considerations for the Design and Operation of Liquefied Petroleum Gas (LPG) Storage Facilities. Washington.

Atkinson, G., Cowpe, E; Halliday, J.; & Painter, D., (2017), A review of very large vapour cloud explosions: Cloud formation and explosion severity. Journal of Loss Prevention in the Process Industries. http://dx.doi.org/10.1016/j.jlp.2017.03.021

CEPRAM, N. T. (2017). NORMA TÉCNICA NT 01: Análise e Gerenciamento de Risco Acidentais para Substâncias Perigosas. Bahia.

CETESB, N. T. (2011). P4–261: Risco de Acidentes de Origem Tecnológica – Método para decisão e termos de referência. São Paulo.

Chavéz, S. R. M. (2015), Evaluación del nivel de riesgo y propuesta de um sistema contra incendios para tanques de almacenamiento de gas licuado de petróleo para minimizar el riesgo de incendio y explosión, Trabajo de Grado (Magister en Seguridad y Salud Ocupacional), Universidad Internacional SEK, Quito.

Chettouh, S; Rachida, H.; & Mourad, C. (2018), Contribuition of the lessons learned from oil refining accidents to the industrial risks assessment, Management of Environmental Quality: An International Journal, 29(4), p. 643-665. doi: 10.1108/MEQ-07-2017-0067

Claret, A. M.; & Mattedi, D. L. (2011), Estudo da prescritividade das normas técnicas brasileiras. Revista Escola de Minas, 64(3), p. 265-271, Ouro Preto, Minas Gerais.

CORPO DE BOMBEIROS MILITAR DO ESTADO DA BAHIA. Instrução Técnica n°28/2017: Manipulação, armazenamento, comercialização e utilização de gás liquefeito de petróleo (GLP). Bahia, 36p.

CORPO DE BOMBEIROS MILITAR DO ESTADO DE GOIÁS. Norma Técnica n°28/2014: Gás liquefeito de petróleo (GLP) – PARTE 1 - Manipulação, utilização e central de GLP. Publicado no BGE n° 205/2014, Goiânia, 27p.

CORPO DE BOMBEIROS MILITAR DO ESTADO DO PARANÁ. Norma de Procedimento Técnico n°28/2014: Manipulação, armazenamento, comercialização e utilização de gás liquefeito de petróleo (GLP). Paraná, 42 p.

Fontenelle, F. M. A. (2012), Análise térmica em estruturas de tanques de armazenamento De etanol em situação de incêndio, Dissertação (Mestrado em Engenharia Civil), Universidade Federal do Rio de Janeiro, Rio de Janeiro.

Islam, K.; & Sultana, S. (2017), Industry Best Pratice Risk based design for LPG Facility: Gap in Bangladesh pratice. Journal of Chemical Engineering, IEB, 30(1), p. 8-11.

Jones, R.; Lehr, W., Simecek-Beatty, D., & Reynolds, R. M. (2013), ALOHA (Area Locations of Hazardous Atmospferes) 5.4.4. Technical Documentation, Seatlle-USA.

Lundin, Johan. (2004), A simple model to determine the need for design review. In: 5th International Conference on Performance-Based Codes and Fire Safety Desing Methods, Luxemboug.

Marx, J. D.; & Cornwell, J. B. (2009), The importance of weather variations in a quantitative risk analysis. Journal of Loss Prevention in the Process Industries, 22, p. 803-808.

Mattedi, D. L. (2005), Uma contribuição ao Estudo do Processo de Projeto de Segurança Contra Incêndio Baseado em Desempenho, Dissertação (Mestrado em Engenharia Civil), Universidade Federal de Ouro Preto, Minas Gerais.

Murthy, M., & Serikova, N., (2016), Selection of failure frequency and its impact on risk assessment e A case study from plot plan optimisation, Journal of Loss Prevention in the Process Industries, http://dx.doi.org/10.1016/j.jlp.2016.05.001

Mišić, N.; Zigar, D.; Božilov, A.; & Pešić, D. (2018), Calculation of termal radiation level during a pool fire caused by leakage of kerose from tnaker wagon at railway crossings. Safety Engineering Series, Vol XIII, N° 1, P. 29-36.

PARANÁ (Estado). Norma de Procedimento Técnico NPT 028/2012: Manipulação, armazenamento, comercialização e utilização de gás liquefeito de petróleo (GLP). Corpo de Bombeiros Militar do Paraná.

Perez, R. C. (2016), Emergências Tecnológicas. 2. Ed., por Rubens Perez, Sorocaba, p. 354.

PETROBRAS, 2013. N-1203: Projeto de sistemas fixos de proteção contra incêndio em instalações industriais terrestres. Dez. 2013 (Rev F).

Raj, P. K., (2005). Exposure of a liquefied gas container to an external fire. Journal of Hazardous Materials, p. 37-49.

Ramsden, N.; & Abusaieda, K. (2017), A study of water cooling using different water application techniques to protect storage tankwalls against thermal radiation. Process Safety and Environmental Protection, I 09, p. 577–598.

Rodrigues, E. E. C. (2016), “Sistema de Gestão da Segurança contra Incêndio e Pânico nas Edificações: Fundamentação para um Regulamentação Nacional”, Tese (Doutorado em Engenharia Civil), Universidade Federal do Rio Grande do Sul, Porto Alegre.

Santos, E. F. (2007), Identificação de hipóteses e cenários de acidentes ampliados em uma unidade de engarrafamento de gás liquefeito de petróleo através de APP, Monografia de conclusão de Curso (Pós-Graduação em Engenharia e Segurança do Trabalho). Universidade de Pernambuco, Recife, p. 64.

Seito, A. I. et al. (Ed. 2008). “A Segurança contra incêndio no Brasil”. São Paulo: Projeto Editora.

Tabaczenski, R.; Côrrea, C.; Santos, M. M. L.; Pires, T. A. C.; & Silva, J. J. R. (2017) Aplicação do software fire dynamics simulator (FDS) no estudo da segurança contra incêndios (SCI) no Brasil. Revista Flammae, 7 (3), p. 87-116.

TNO - The Netherlands Organization of Applied Scientific Research (1992). Methods for the determination of possible damage to people and objects resulting releases of hazardous materials "Green Book". 3ª ed. The Hague.

Tomasoni, A. M., Galbolino, E.; Rovatii, M; & Sacile, R. (2010), Risk evaluation of real-time accident scenarios in the transport of hazardous material on road, Management of Environmental Quality: An International Journal, Vol. 21 No. 5, pp. 695-711.

Yi, H.; Feng, Y..; & Wang, Q. (2019), Computational fluid dynamics (CFD) study of heat radiation from large liquefied petroleum gas (LPG) pool fires. Journal of Loss Prevention in the Process Industries, 61, p.262-274.

Zio, E., & Aven, T. (2013), Industrial disasters: extreme events, extremely rare. Some reflections on the treatment of uncertainties in the assessment of the associated risks, Process Safety and Environmental Protection, 91 (1), p. 31-45.

Published

19/03/2020

How to Cite

MARTINS, R. M. de S. T.; VIANNA, R. F. Proposal thermal radiation calculation using software to select equipment to be cooled in case of fire in LPG storage parks. Research, Society and Development, [S. l.], v. 9, n. 4, p. e103942893, 2020. DOI: 10.33448/rsd-v9i4.2893. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/2893. Acesso em: 24 apr. 2024.

Issue

Section

Engineerings