Stingless bees honeys': physical-chemical characterization, difficulties and challenges

Authors

DOI:

https://doi.org/10.33448/rsd-v11i6.28996

Keywords:

Honey; Stingless bee; Physicochemical properties; Commercialization pattern; Sustainable practice.

Abstract

Stingless bees form a group of eusocial bees belonging to the tribe Meliponini (Hymenoptera: Apidae) and are distributed in tropical and subtropical regions of the planet. Brazil, the main territory regarding stingless bees’ diversity, has a large variety of phytogeographic regions that can influence the physical-chemical properties of the honey. Currently, the country does not have a legislation that represents its territorial reality as a whole, making the parameters unattainable for producers to market stingless bees’ honey. In addition to its economic importance for producers, this product has sensory characteristics that are different from those produced by Apis mellifera, making it a product with high added value. Additionally, honey production is a sustainable practice and increases bee conservation, which, in general, are mainly threatened by human interference. Thus, the objective of this work was to analyze the scientific productions published in consolidated databases to understand how bees deal with different environmental and geographic conditions and how this reflects on honey characteristics, in addition, to generate data to prepare a proposal to standardize and market the honey. For this, the StART software was used, with the elaboration of a systematic review protocol. A total of 93 articles were listed in the initial search in the Web of Science, Scopus and Google Scholar databases and after the selection and execution process, 50 articles were selected. In the summarization phase, it was observed that there is still no consensus among researchers on how to stipulate a standard and reference ranges for the analyses.

References

Al-Hatamleh, M. A. I., Boer, J. C., Wilson, K. L., Plebanski, M., Mohamud, R., & Mustafa, M. Z. (2020). Antioxidant-based medicinal properties of stingless bee products: Recent progress and future directions. Biomolecules, 10(6), 1–28. https://doi.org/10.3390/biom10060923

Alvarez-Suarez, J. M., Giampieri, F., Brenciani, A., Mazzoni, L., Gasparrini, M., González-Paramás, A. M., Santos-Buelga, C., Morroni, G., Simoni, S., Forbes-Hernández, T. Y., Afrin, S., Giovanetti, E., & Battino, M. (2018). Apis mellifera vs Melipona beecheii Cuban polifloral honeys: A comparison based on their physicochemical parameters, chemical composition and biological properties. Lwt, 87, 272–279. https://doi.org/10.1016/j.lwt.2017.08.079

Alves, R. M. de O., Viana, J. L., Sousa, H. de A. C., & Waldschmidt, A. M. (2018). Physico-chemical Parameters of Honey From Melipona mondury Smith, 1863 (Hymenoptera: Apidae: Meliponini). Journal of Agricultural Science, 10(7), 196. https://doi.org/10.5539/jas.v10n7p196

Ávila, S., Beux, M. R., Ribani, R. H., & Zambiazi, R. C. (2018). Stingless bee honey: Quality parameters, bioactive compounds, health-promotion properties and modification detection strategies. Trends in Food Science and Technology, 81(September), 37–50. https://doi.org/10.1016/j.tifs.2018.09.002

Ávila, S., Hornung, P. S., Teixeira, G. L., Beux, M. R., Lazzarotto, M., & Ribani, R. H. (2018). A chemometric approach for moisture control in stingless bee honey using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 26(6), 379–388. https://doi.org/10.1177/0967033518805254

Ávila, S., Hornung, P. S., Teixeira, G. L., Malunga, L. N., Apea-Bah, F. B., Beux, M. R., Beta, T., & Ribani, R. H. (2019). Bioactive compounds and biological properties of Brazilian stingless bee honey have a strong relationship with the pollen floral origin. Food Research International, 123(January), 1–10. https://doi.org/10.1016/j.foodres.2019.01.068

Ávila, S., Lazzarotto, M., Hornung, P. S., Teixeira, G. L., Ito, V. C., Bellettini, M. B., Beux, M. R., Beta, T., & Ribani, R. H. (2019). Influence of stingless bee genus (Scaptotrigona and Melipona) on the mineral content, physicochemical and microbiological properties of honey. Journal of Food Science and Technology, 56(10), 4742–4748. https://doi.org/10.1007/s13197-019-03939-8

Barbiéri, C., & Francoy, T. M. (2020). Theoretical model for interdisciplinary analysis of human activities: Meliponiculture as an activity that promotes sustainability. Ambiente e Sociedade, 23. https://doi.org/10.1590/1809-4422ASOC20190020R2VU2020L4AO

Bijlsma, L., De Bruijn, L. L. M., Martens, E. P., & Sommeijer, M. J. (2006). Water content of stingless bee honeys (Apidae, Meliponini): Interspecific variation and comparison with honey of Apis mellifera. Apidologie, 37(4), 480–486. https://doi.org/10.1051/apido:2006034

Biluca, F. C., Braghini, F., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis, 50, 61–69. https://doi.org/10.1016/j.jfca.2016.05.007

Braat, L. C., & de Groot, R. (2012). The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosystem Services, 1(1), 4–15. https://doi.org/10.1016/j.ecoser.2012.07.011

Braghini, F., Biluca, F. C., Ottequir, F., Gonzaga, L. V., da Silva, M., Vitali, L., Micke, G. A., Costa, A. C. O., & Fett, R. (2020). Effect of different storage conditions on physicochemical and bioactive characteristics of thermally processed stingless bee honeys. Lwt, 131(April), 109724. https://doi.org/10.1016/j.lwt.2020.109724

Braghini, F., Biluca, F. C., Schulz, M., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2021). Stingless bee honey: a precious but unregulated product - reality and expectations. Food Reviews International, 00(00), 1–30. https://doi.org/10.1080/87559129.2021.1884875

Cardona, Y., Torres, A., & Hoffmann, W. (2019). Colombian stingless bee honeys characterized by multivariate analysis of physicochemical properties. Apidologie, 50(6), 881–892. https://doi.org/10.1007/s13592-019-00698-5

Carina Biluca, F., Braghini, F., de Campos Ferreira, G., Costa dos Santos, A., Helena Baggio Ribeiro, D., Valdemiro Gonzaga, L., Vitali, L., Amadeu Micke, G., Carolina Oliveira Costa, A., & Fett, R. (2021). Physicochemical parameters, bioactive compounds, and antibacterial potential of stingless bee honey. Journal of Food Processing and Preservation, 45(2), 1–11. https://doi.org/10.1111/jfpp.15127

CBD. (2009). The Convention on Biological Diversity -Year in review 2008. In CBD.

Chen, Y. H., Chuah, W. C., & Chye, F. Y. (2021). Effect of drying on physicochemical and functional properties of stingless bee honey. Journal of Food Processing and Preservation, 45(4), 1–15. https://doi.org/10.1111/jfpp.15328

Chong, K. Y., Chin, N. L., & Yusof, Y. A. (2017). Thermosonication and optimization of stingless bee honey processing. Food Science and Technology International, 23(7), 608–622. https://doi.org/10.1177/1082013217713331

Chuttong, B., Chanbang, Y., Sringarm, K., & Burgett, M. (2016). Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chemistry, 192, 149–155. https://doi.org/10.1016/j.foodchem.2015.06.089

Cuevas-Glory, L. F., Pino, J. A., Sosa-Moguel, O., Sauri-Duch, E., & Bringas-Lantigua, M. (2017). Optimization of the Spray-Drying Process for Developing Stingless Bee Honey Powder. International Journal of Food Engineering, 13(1). https://doi.org/10.1515/ijfe-2016-0217

da Costa, I. F., & Toro, M. J. U. (2021). Evaluation of the antioxidant capacity of bioactive compounds and determination of proline in honeys from Pará. Journal of Food Science and Technology, 58(5), 1900–1908. https://doi.org/10.1007/s13197-020-04701-1

da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051

De Almeida-Muradian, L. B., Stramm, K. M., Horita, A., Barth, O. M., Da Silva de Freitas, A., & Estevinho, L. M. (2013). Comparative study of the physicochemical and palynological characteristics of honey from Melipona subnitida and Apis mellifera. International Journal of Food Science and Technology, 48(8), 1698–1706. https://doi.org/10.1111/ijfs.12140

Delgado, C., Mejía, K., & Rasmussen, C. (2020). Management practices and honey characteristics of Melipona eburnea in the peruvian amazon. Cien. Rural, 50(12), 1–10. https://doi.org/10.1590/0103-8478cr20190697

Echeverrigaray, S., Scariot, F. J., Foresti, L., Schwarz, L. V., Rocha, R. K. M., da Silva, G. P., Moreira, J. P., & Delamare, A. P. L. (2021). Yeast biodiversity in honey produced by stingless bees raised in the highlands of southern Brazil. International Journal of Food Microbiology, 347(January). https://doi.org/10.1016/j.ijfoodmicro.2021.109200

Espinoza-Toledo, C., Vázquez-Ovando, A., Torres de los Santos, R., López-García, A., Albores-Flores, V., & Grajales-Conesa, J. (2018). Stingless bee honeys from Soconusco, Chiapas: A complementary approach. International Journal of Food Science and Technology, 66(4), 1536–1546. https://doi.org/10.15517/rbt.v66i4.32181

Fabbri, S., Silva, C., Hernandes, E., Octaviano, F., Di Thommazo, A., & Belgamo, A. (2016). Improvements in the StArt tool to better support the systematic review process. ACM International Conference Proceeding Series, 01-03-June. https://doi.org/10.1145/2915970.2916013

Fernandes, R. T., Rosa, I. G., & Conti-Silva, A. C. (2020). Honey from Tiúba stingless bees (Melipona fasciculata) produced in different ecosystems: physical and sensory studies. Journal of the Science of Food and Agriculture, 100(9), 3748–3754. https://doi.org/10.1002/jsfa.10415

Fuad, A. M. A., Anwar, N. Z. R., Zakaria, A. J., Shahidan, N., & Zakaria, Z. (2018). Physicochemical characteristics of Malaysian honeys influenced by storage time and temperature. Journal of Fundamental and Applied Sciences, 9(2S), 841. https://doi.org/10.4314/jfas.v9i2s.52

Fuenmayor, C. A., Zuluaga-Domínguez, C. M., Díaz-Moreno, A. C., & Quicazán, M. C. (2012). Miel de angelita’: Nutritional composition and physicochemical properties of Tetragonisca angustula honey. Interciencia, 37(2), 142–147.

Gela, A., Hora, Z. A., Kebebe, D., & Gebresilassie, A. (2021). Physico-chemical characteristics of honey produced by stingless bees (Meliponula beccarii) from West Showa zone of Oromia Region, Ethiopia. Heliyon, 7(1), e05875. https://doi.org/10.1016/j.heliyon.2020.e05875

Guerrini, A., Bruni, R., Maietti, S., Poli, F., Rossi, D., Paganetto, G., Muzzoli, M., Scalvenzi, L., & Sacchetti, G. (2009). Ecuadorian stingless bee (Meliponinae) honey: A chemical and functional profile of an ancient health product. Food Chemistry, 114(4), 1413–1420. https://doi.org/10.1016/j.foodchem.2008.11.023

Hipólito, J., Coutinho, J., Mahlmann, T., Santana, T. B. R., & Magnusson, W. E. (2021). Legislation and pollination: Recommendations for policymakers and scientists. Perspectives in Ecology and Conservation, 19(1), 1–9. https://doi.org/10.1016/j.pecon.2021.01.003

IJ, F., AB, M. H., I, S., & M, L. (2018). Physicochemical Characteristics of Malaysian Stingless Bee Honey from Trigona Species. IIUM Medical Journal Malaysia, 17(1). https://doi.org/10.31436/imjm.v17i1.1030

Ismail, W. I. W., Hussin, N. N., Mazlan, S. N. F., Hussin, N. H., & Radzi, M. N. F. M. (2018). Physicochemical Analysis, Antioxidant and Anti Proliferation Activities of Honey, Propolis and Beebread Harvested from Stingless Bee. IOP Conference Series: Materials Science and Engineering, 440(1). https://doi.org/10.1088/1757-899X/440/1/012048

Jaffé, R., Pope, N., Carvalho, A. T., Maia, U. M., Blochtein, B., de Carvalho, C. A. L., Carvalho-Zilse, G. A., Freitas, B. M., Menezes, C., de Fátima Ribeiro, M., Venturieri, G. C., & Imperatriz-Fonseca, V. L. (2015). Bees for Development: Brazilian Survey Reveals How to Optimize Stingless Beekeeping. PLOS ONE, 10(3), e0121157. https://doi.org/10.1371/journal.pone.0121157

Jimenez, M., Beristain, C. I., Azuara, E., Mendoza, M. R., & Pascual, L. A. (2016). Physicochemical and antioxidant properties of honey from Scaptotrigona mexicana bee. Journal of Apicultural Research, 55(2), 151–160. https://doi.org/10.1080/00218839.2016.1205294

Khongkwanmueang, A., Nuyu, A., Straub, L., & Maitip, J. (2020). Physicochemical Profiles, Antioxidant and Antibacterial Capacity of Honey from Stingless Bee Tetragonula laeviceps Species Complex. E3S Web of Conferences, 141, 03007. https://doi.org/10.1051/e3sconf/202014103007

Koffler, S., Barbiéri, C., Ghilardi-Lopes, N. P., Leocadio, J. N., Albertini, B., Francoy, T. M., & Saraiva, A. M. (2021). A buzz for sustainability and conservation: The growing potential of citizen science studies on bees. Sustainability (Switzerland), 13(2), 1–15. https://doi.org/10.3390/su13020959

Koser, J. R., Barbiéri, C., & Francoy, T. M. (2020). Legislation on meliponiculture in Brazil: A social and environmental demand. Sustainability in Debate, 11(1), 164–178. https://doi.org/10.18472/SustDeb.v11n1.2020.30319

Lage, L. G. A., Coelho, L. L., Resende, H. C., Tavares, M. G., Campos, L. A. O., & Fernandes-Salomão, T. M. (2012). Honey physicochemical properties of three species of the Brazilian Melipona. Anais Da Academia Brasileira de Ciencias, 84(3), 605–608. https://doi.org/10.1590/S0001-37652012005000051

Mail, M. H., Ab Rahim, N., Amanah, A., Khawory, M. H., Shahudin, M. A., & Seeni, A. (2019). FTIR and elementary analysis of Trigona honey, Apis honey and adulterated honey mixtures. Biomedical and Pharmacology Journal, 12(4), 2011–2017. https://doi.org/10.13005/bpj/1833

Marcolin, L. C., Lima, L. R., de Oliveira Arias, J. L., Berrio, A. C. B., Kupski, L., Barbosa, S. C., & Primel, E. G. (2021). Meliponinae and Apis mellifera honey in southern Brazil: Physicochemical characterization and determination of pesticides. Food Chemistry, 363(May), 130175. https://doi.org/10.1016/j.foodchem.2021.130175

Maringgal, B., Hashim, N., Tawakkal, I. S. M. A., Mohamed, M. T. M., & Shukor, N. I. A. (2019). Phytochemical compositions and antioxidant activities of malaysian stingless bee honey. Pertanika Journal of Science and Technology, 27(S1), 15–28.

Martínez, R. A., Schvezov, N., Brumovsky, L. A., & Román, A. B. P. (2018). Influence of temperature and packaging type on quality parameters and antimicrobial properties during Yateí honey storage. Food Science and Technology, 38, 196–202. https://doi.org/10.1590/1678-457x.17717

Michener, C. D. (2007). Bees of the world. In American Scientist (2 ed, Vol. 78, Issue 2). The Johns Hopkins University Press.

Mohamad Ghazali, N. S., Yusof, Y. A., Mohd Ghazali, H., Chin, N. L., Othman, S. H., Manaf, Y. N., Chang, L. S., & Mohd Baroyi, S. A. H. (2021). Effect of surface area of clay pots on physicochemical and microbiological properties of stingless bee (Geniotrigona thoracica) honey. Food Bioscience, 40(April 2020), 100839. https://doi.org/10.1016/j.fbio.2020.100839

Nordin, A., Sainik, N. Q. A. V., Chowdhury, S. R., Saim, A. Bin, & Idrus, R. B. H. (2018). Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. Journal of Food Composition and Analysis, 73(February), 91–102. https://doi.org/10.1016/j.jfca.2018.06.002

Omar, A. F., Mardziah Yahaya, O. K., Tan, K. C., Mail, M. H., & Seeni, A. (2016). The influence of additional water content towards the spectroscopy and physicochemical properties of genus Apis and stingless bee honey . Optical Sensing and Detection IV, 9899(April 2016), 98990Y. https://doi.org/10.1117/12.2227060

Ooi, T. C., Yaacob, M., Rajab, N. F., Shahar, S., & Sharif, R. (2021). The stingless bee honey protects against hydrogen peroxide-induced oxidative damage and lipopolysaccharide-induced inflammation in vitro. Saudi Journal of Biological Sciences, 28(5), 2987–2994. https://doi.org/10.1016/j.sjbs.2021.02.039

Orr, M. C., Hughes, A. C., Chesters, D., Pickering, J., Zhu, C., Ascher, J. S., Orr, M. C., Hughes, A. C., Chesters, D., Pickering, J., Zhu, C., & Ascher, J. S. (2021). Article Global Patterns and Drivers of Bee Distribution Global Patterns and Drivers of Bee Distribution. Current Biology, 1–8. https://doi.org/10.1016/j.cub.2020.10.053

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345–353. https://doi.org/10.1016/j.tree.2010.01.007

Razali, M. T. A., Zainal, Z. A., Maulidiani, M., Shaari, K., Zamri, Z., Idrus, M. Z. M., Khatib, A., Abas, F., Ling, Y. S., Rui, L. L., & Ismail, I. S. (2018). Classification of raw stingless bee honeys by bee species origins using the NMR- and LC-MS-based metabolomics approach. Molecules, 23(9), 1–18. https://doi.org/10.3390/molecules23092160

Rodríguez-Malaver, A. J., Rasmussen, C., Gutiérrez, M. G., Gil, F., Nieves, B., & Vit, P. (2009). Properties of honey from ten species of Peruvian stingless bees. Natural Product Communications, 4(9), 1221–1226. https://doi.org/10.1177/1934578x0900400913

Schvezov, N., Pucciarelli, A. B., Valdes, B., & Dallagnol, A. M. (2020). Characterization of yateí (Tetragonisca fiebrigi) honey and preservation treatments: Dehumidification, pasteurization and refrigeration. Food Control, 111(December 2019), 107080. https://doi.org/10.1016/j.foodcont.2019.107080

Selvaraju, K., Vikram, P., Soon, J. M., Krishnan, K. T., & Mohammed, A. (2019). Melissopalynological, physicochemical and antioxidant properties of honey from West Coast of Malaysia. Journal of Food Science and Technology, 56(5), 2508–2521. https://doi.org/10.1007/s13197-019-03728-3

Shamsudin, S., Selamat, J., Sanny, M., Abd. Razak, S. B., Jambari, N. N., Mian, Z., & Khatib, A. (2019). Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. International Journal of Food Properties, 22(1), 238–263. https://doi.org/10.1080/10942912.2019.1576730

Shamsudin, S., Selamat, J., Sanny, M., Shamsul Bahari, A. R., Jambari, N. N., & Khatib, A. (2019). A comparative characterization of physicochemical and antioxidants properties of processed Heterotrigona itama honey from different origins and classification by chemometrics analysis. Molecules, 24(21), 1–20. https://doi.org/10.3390/molecules24213898

Sharin, S. N., Sani, M. S. A., Jaafar, M. A., Yuswan, M. H., Kassim, N. K., Manaf, Y. N., Wasoh, H., Zaki, N. N. M., & Hashim, A. M. (2021). Discrimination of Malaysian stingless bee honey from different entomological origins based on physicochemical properties and volatile compound profiles using chemometrics and machine learning. Food Chemistry, 346(June 2020), 128654. https://doi.org/10.1016/j.foodchem.2020.128654

Siddiqui, A. J., Musharraf, S. G., Choudhary, M. I., & Rahman, A.-. (2017). Application of analytical methods in authentication and adulteration of honey. Food Chemistry, 217, 687–698. https://doi.org/10.1016/j.foodchem.2016.09.001

Silva, I. A. A., Souza, A. L., Cordeiro, A. M. T. M., Soledade, L. E. B., Queiroz, N., & Souza, A. G. (2013). Thermal degradation of honeys and evaluation of physicochemical properties. Journal of Thermal Analysis and Calorimetry, 114(1), 353–358. https://doi.org/10.1007/s10973-012-2926-x

Tuksitha, L., Chen, Y. L. S., Chen, Y. L., Wong, K. Y., & Peng, C. C. (2018). Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). Journal of Asia-Pacific Entomology, 21(2), 563–570. https://doi.org/10.1016/j.aspen.2018.03.007

Umaña, E., Zamora, G., Aguilar, I., Arias, M. L., Pérez, R., Sánchez, L. A., Solórzano, R., & Herrera, E. (2021). Physicochemical differentiation of stingless bee honeys from Costa Rica. Journal of Apicultural Research, 0(0), 1–10. https://doi.org/10.1080/00218839.2021.1903737

Vit, P., Oddo, L. P., Marano, M. L., & Salas de Mejias, E. (1998). Venezuelan stingless bee honeys characterized by multivariate analysis of physicochemical properties. Apidologie, 29(5), 377–389. https://doi.org/10.1051/apido:19980501

Wong, P., Ling, H. S., Chung, K. C., Yau, T. M. S., & Gindi, S. R. A. (2019). Chemical Analysis on the Honey of Heterotrigona itama and Tetrigona binghami from Sarawak, Malaysia. Sains Malaysiana, 48(8), 1635–1642. https://doi.org/10.17576/jsm-2019-4808-09

Ya, H., Fatiha Norhisham, N., Mohamed, M., Sadek, N., Endrini, S., & Riau Ujung Pekanbaru Riau Province, J. (2019). Evaluation of Physicochemical Properties of Trigona sp. Stingless Bee Honey from Various Districts of Johor (Kajian fizikokimia terhadap Trigon sp. Madu Lebah Kelulut di Daerah Johor). Jurnal Kejuruteraan SI, 2(1), 59–67. https://doi.org/10.17576/jkukm-2019-si2

Downloads

Published

27/04/2022

How to Cite

FALEIROS-QUEVEDO, M.; FRANCOY, T. M. Stingless bees honeys’: physical-chemical characterization, difficulties and challenges. Research, Society and Development, [S. l.], v. 11, n. 6, p. e25411628996, 2022. DOI: 10.33448/rsd-v11i6.28996. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28996. Acesso em: 25 may. 2022.

Issue

Section

Review Article