Production of fish protein hydrolisates from Oreochromis niloticus fillet trimmings




Enzyme hydrolysis; Optimization; Fish co-products; Protein; Protease.


Process optimization is essential for the large-scale viability of the food industry. Central composite rotational design (CCRD) followed by response surface analysis was used to optimize the production of fish protein hydrolysate (FHP). FHP was obtained from tilapia filet trimmings hydrolyzed subjected using Alcalase 2.4L™, Neutrase™, and Novo-Pro™ D enzymes under temperature, enzyme concentration, and pH-controlled conditions. A 23-3 full factorial design (FFD) was initially employed to select the most influential variables in the process (with each enzyme used in the CCRD). From the FFD, temperature and enzyme concentration for Alcalase 2.4L™ and Novo-Pro™ D, and temperature and pH for Neutrase™ were selected. The estimated maximum degree of hydrolysis (DHmax) using Alcalase 2.4L™ was 60.05% during 180 min of processing at 39.03°C and 0.65% enzyme concentration. A DHmax of 56.96% was reached using Neutrase™ during 120 min at 39.46°C and 6.039 pH. Novo-Pro™ D was associated with a DHmax of 54.76% during 60 min at 47.95°C and 0.866% enzyme concentration. The three enzymes showed promising results for obtaining FHP with high DH from Nile tilapia filet trimmings.


Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydro-lysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry, 27(6), 1256–1262. doi:

Adler-Nissen, J. (1986). Enzymatic hydrolysis of food proteins. (1st. ed.). Elsevier Science Publishing Co.

Amiza, M. A., Liyana, H. A. & Zaliha, H. (2017). Optimization of enzymatic protein hydrolysis conditions to obtain maximum angiotensin-I-converting enzyme (ACE) inhibitory activity from Angel Wing Clam (Pholas orientalis) meat. Madridge Journal of Food Technology, 2(1), 65-73. doi:

Amiza M. A. & Masitah M. (2012). Optimization of enzymatic hydrolysis of blood cockle (Anadara granosa) using Alcalase. Borneo Science, 31, 1-8.

Amiza, M. A., Nurul Ashikin, S. & Faazaz,A. L. (2011). Optimization of Enzymatic Protein Hydrolysis from Silver Catfish (Pangasius sp.) Frame. International Food Research Journal, 18(2), 775-781.

AOAC (2016). Official Methods of Analysis. (20 ed.). Rockville: AOAC Internacional.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento (2019). Manual de Métodos Oficiais para Análise de Alimentos de Origem Animal (2nd ed.). Brasília: MAPA.

Dey, S. S. & Dora, K. C. (2011). Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology. Journal of Food Science and Technology, 51(1), 16-24. doi:

Egerton, S., Culloty, S., Whooley, J., Stantone, C. & Ross, R. P. (2018). Characterization of protein hydrolysates from blue whiting (Micromesistius poutassou) and their application in beverage fortification. Food Chemistry, 245, 698–706. doi:

Foh, M. B. K., Qixing, J., Amadou, I. & Xia, W. S. (2010). Influence of ultrafiltration on antioxidant activity of tilapia (Oreochromis niloticus) protain hydrolysate. Advance Journal of Food Science and Technology, 2(5), 227-235.

Fountoulakis, M. & Lahm, H. (1998). Hydrolysis and amino acid composition analysis of proteins. Journal of Chromatography A, 826, 109-134. doi:

FAO (2020). The State of World Fisheries and Aquaculture (SOFIA). Rome: FAO.

Giannetto, A., Esposito, E., Lanza, M., Oliva, S., Riolo, K., Di Pietro, S., ... & Macrì, F. (2020). Protein hydrolysates from anchovy (Engraulis encrasicolus) waste: In vitro and in vivo biological activities. Marine drugs, 18(2), 86. doi:

He, S., Franco, C. & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). International Food Research Journal, 50 (1), 289–297.

Herath, S. S., Haga, Y. & Satoh, S. (2016). Effects of long-term feeding of corn co-product-based diets on growth, fillet color, and fatty acid and amino acid composition of Nilo tilapia, (Oreochromis niloticus). Aquaculture, 464, 205-212. doi:

Hoyle, N. & Merrit, J. H. (1994). Quality of fish protein hydrolysate from herring. Journal of Food Science, 1, 4769-4774.

Hsu, K. (2010). Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 122, 42-48. doi:

Ishak, N. & Sarbon, N. (2018). A Review of Protein Hydrolysates and Bioactive Peptides Deriving from Wastes Generated by Fish Processing. Food Bioprocess Technology, 11, 2-16. doi:

Jafarpour, A., Gregersen, S., Marciel Gomes, R., Marcatili, P., Hegelund Olsen, T., Jacobsen, C., ... & Sørensen, A. D. M. (2020). Biofunctionality of enzymatically derived peptides from codfish (gadus morhua) frame: Bulk in vitro properties, quantitative proteomics, and bioinformatic prediction. Marine drugs, 18(12), 599. doi: https://10.3390/md18120599

Joglekar, M. & May, T. (1987). Product excellence through design of experiments. Cereal Food World, 32, 857-868.

Kamnerdpetch, C., Weiss, M., Kasper, C. & Scheper, T. (2007). An improvement of potato pulp protein hydrolyzation process by the combination of protease enzyme systems. Enzyme and Microbial Technology, 40, 508-514. doi: https://10.1016/j.enzmictec.2006.05.006

Klomklao, S. & Benjakul, S. (2016). Utilization of tuna processing byproducts: protein hydrolysate from skipjack tuna (Katsuwonus pelamis) viscera, Journal of Food Processing and Preservation, 41, e12970. doi:

Kristinsson, H. G. & Rasco, B. A. (2010). Fish protein hydrolysates: production, biochemical, and functional properties, Critical Reviews in Food Science and Nutrition, 40(1), 43-81. doi:

Lenth, R. V. (2009). Response-Surface Methods in R, Using RSM. Journal of Statistical Software, 32(7), 1–17. doi: https://10.18637/jss.v032.i07

Liceaga-Gesualdo, A. M. & Li-Chan, E. C. Y. (1999). Functional properties of fish protein hydrolysate from herring (Clupea harengus). Journal of Food Science, 64, 1000-1004. doi:

Lopes, A. L., Novelli, P. K., Fernandez-Lafuente, R., Tardioli, P. W. & Giordano, R. L. C. (2020). Glyoxyl-Activated Agarose as Support for Covalently Link Novo-Pro D: Biocatalysts Performance in the Hydrolysis of Casein. Catalysts, 10, 466. doi:

Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, v. 193, 265-275.

Maluf, J. U., Fiorese, M. L., Maestre, K. L., Passos, F. R., Finkler, J. K., Fleck, J. F. & Borba, C. E. (2019). Optimization of the porcine liver enzymatic hydrolysis conditions. Journal of Food Process Engineering, 2020, e13370. doi:

Messina, C. M., Manuguerra, S., Arena, R., Renda, G., Ficano, G., Randazzo, M., ... & Santulli, A. (2021). In Vitro Bioactivity of Astaxanthin and Peptides from Hydrolisates of Shrimp (Parapenaeus longirostris) By-Products: From the Extraction Process to Biological Effect Evaluation, as Pilot Actions for the Strategy “From Waste to Profit”. Marine Drugs, 19(4), 216. doi:

Mullen, A. M., Alvarez, C., Zeugolis, D. I., Neill, E. O. & Drummond, L. (2017). Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains. Meat Science, 132, 90-98. doi:

Nelson, D. L. & Cox, M. M. (2014). Princípios de bioquímica de Lehninger (6 ed.). Porto Alegre: Artmed.

Ngo, D., Qian, Z., Ryu, B., Park, J. W. & Kim, S. (2010). In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. Journal of Functional Foods, 2, 107-117. doi:

Nollet, L. M. L & Toldra, F. (2011). Handbook of Analysis of Edible Animal By-Products. New York: CRC Press.

Ogawa, M. (1999). Alterações da carne de pescado por processamento e estocagem. In: Ogawa, M. & Maia, E. L. Manual de pesca – ciência e tecnologia do pescado (221-249). São Paulo: Varela.

Shen, Q., Guo, R., Dai, Z. & Zhang, Y. (2012). Investigation of Enzymatic Hydrolysis Conditions on the Properties of Protein Hydrolysate from Fish Muscle (Collichthys niveatus) and Evaluation of Its Functional Properties. Journal of Agricultural and Food Chemistry, 60, 5192-5198. doi: / jf205258f

R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Raghavan, S. & Kristinsson, H. G. (2008). Antioxidative efficacy of alkali-treated Tilapia protein hydrolysates: A comparative study of five enzymes. Journal of Agricultural and Food Chemistry, 56, 1434-1441. doi:

Roslan, J., Mustapa Kamal, S. M., Md. Yunos, K. F. & Abdullah, N. (2015). Optimization of enzymatic hydrolysis of tilapia (Oreochromis niloticus) byproduct using response surface methodology, International Food Research Journal, 22, 1117-1123.

Roslan, J., Kamal, S. M. M, Md. Yunos, K. F. & Abdullahb, N. (2014a). Optimization of Enzymatic Hydrolysis of Tilapia Muscle (Oreochromis niloticus) using Response Surface Methodology (RSM). Sains Malaysia, 43, 1715-1723.

Roslan, J., Md. Yunos, K. F., Abdullahb, N. & Kamal, S. M. M. (2014b). Characterization of Fish Protein Hydrolysate from Tilapia (Oreochromis niloticus) by-Product. Agriculture and Agricultural Science Procedia, 2, 312-319. doi:

Silva, J. F. X., Ribeiro, J. F., Silva, J. S., Cahú, T. B. & Bezerra, R. S. (2014). Utilization of tilapia processing waste for the production of fish protein hydrolysate. Animal Feed Science and Technology, 196, 96-106. doi:

Tavano, O. L. (2013). Protein hydrolysis using proteases: an important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90,1-11. doi:

Toldrá, F., Mora, L. & Reig, M. (2016). New insights into meat by-product utilization. Meat Science, 120, 54-59. doi: meatsci.2016.04.021

Tkaczewska, J., Borawska-Dziadkiewicz, J., Kulawik, P., Duda, I., Morawska, M., & Mickowska, B. (2020). The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. Lwt, 117, 108616. doi:

Ucak, I., Afreen, M., Montesano, D., Carrillo, C., Tomasevic, I., Simal-Gandara, J., & Barba, F. J. (2021). Functional and bioactive properties of peptides derived from marine side streams. Marine Drugs, 19(2), 71. doi:

Vázquez, J. A., Blanco, M., Massa, A. E., Amado, I. R. & Pérez-Martín, R. I. (2017). Production of Fish Protein Hydrolysates from Scyliorhinus canicula Discards with Antihypertensive and Antioxidant Activities by Enzymatic Hydrolysis and Mathematical Optimization Using Response Surface Methodology. Marine Drugs, 15, 306. doi:

Waglay, A. & Karboune, S. (2016). Enzymatic Generation of Peptides from Potato Proteins by Selected Proteases and Characterization of Their Structural Properties, Biotechnology Progress, (32)2, 420-9. doi:

Whitaker, J. R. & Dekker, M., (1994). Principles of Enzymology for the Food Sciences (2th ed.), New York: Marcel Dekker.

Wu, F., Jiang, M., Wen, H., Liu, W., Tian, J., Yang, C. & Huang, F. (2017). Dietary vitamin E effects on growth, fillet textural parameters, and antioxidant capacity of genetically improved farmed tilapia (GIFT), Oreochromis niloticus. Aquaculture International, 25, 991-1003. doi: / s10499-016-0089-7

Yarnpakdee S., Benjakul S., Kristinsson H. G. & Kishimura H. (2015). Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one-and two-step hydrolysis. Journal of Food Science and Technology, 6, 3336-3349. doi: / s13197-014-1394-7




How to Cite

FINKLER, J. K.; PIANA, P. A. .; FLECK, J. F. .; BOSCOLO, W. R. .; FEIDEN, A. .; SIGNOR, A.; FIORESE, M. L. . Production of fish protein hydrolisates from Oreochromis niloticus fillet trimmings. Research, Society and Development, [S. l.], v. 11, n. 6, p. e37311629172, 2022. DOI: 10.33448/rsd-v11i6.29172. Disponível em: Acesso em: 22 may. 2022.



Agrarian and Biological Sciences