Producción de hidrolizados de proteína de pescado a partir de recortes de filetes de Oreochromis niloticus
DOI:
https://doi.org/10.33448/rsd-v11i6.29172Palabras clave:
Hidrólisis enzimática; Optimización; Subproductos de pescado; Proteína; Proteasa.Resumen
La optimización de procesos es esencial para la viabilidad a gran escala en la industria alimentaria. Aquí, aplicamos la metodología de diseño rotacional compuesto central (DRCC) seguida de un análisis de superficie de respuesta para optimizar la producción de hidrolizado de proteína de pescado (HPP). El HPP se obtuvo a partir de recortes de filete de tilapia sometidos al proceso de hidrólisis utilizando las enzimas Alcalase 2.4L™, Neutrase™ y Novo-Pro™ D, en condiciones controladas de temperatura, concentración de enzimas y pH. Primero, aplicamos un Diseño de Factor Fraccionario (DFF) 23-3 para seleccionar las variables más influyentes en el proceso con cada enzima a aplicar en el DRCC. Del DFF, seleccionamos la temperatura y la concentración de enzimas para Alcalase 2.4L™ y Novo-Pro™ D, la temperatura y el pH para Neutrase™. El grado máximo estimado de hidrólisis (GHmax) con Alcalase 2.4L™ fue del 60,05 % en un proceso de 180 min a 39,03 °C y una concentración de enzima del 0,65 %. Neutrase™ logró una GHmáx del 56,96 % durante 120 min a 39,46 °C y un pH de 6,039, mientras que Novo-Pro™ D tuvo una GHmáx del 54,76 % durante 60 min a 47,95 °C y una concentración de enzima del 0,866 %. Por lo tanto, las tres enzimas mostraron resultados prometedores para obtener HPP con alto contenido de GH a partir de recortes de filete de tilapia del Nilo.
Citas
Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydro-lysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry, 27(6), 1256–1262. doi: https://doi-org.ez109.periodicos.capes.gov.br/10.1021/jf60226a042.
Adler-Nissen, J. (1986). Enzymatic hydrolysis of food proteins. (1st. ed.). Elsevier Science Publishing Co.
Amiza, M. A., Liyana, H. A. & Zaliha, H. (2017). Optimization of enzymatic protein hydrolysis conditions to obtain maximum angiotensin-I-converting enzyme (ACE) inhibitory activity from Angel Wing Clam (Pholas orientalis) meat. Madridge Journal of Food Technology, 2(1), 65-73. doi: https://doi.org/10.18689/mjft-1000110
Amiza M. A. & Masitah M. (2012). Optimization of enzymatic hydrolysis of blood cockle (Anadara granosa) using Alcalase. Borneo Science, 31, 1-8.
Amiza, M. A., Nurul Ashikin, S. & Faazaz,A. L. (2011). Optimization of Enzymatic Protein Hydrolysis from Silver Catfish (Pangasius sp.) Frame. International Food Research Journal, 18(2), 775-781.
AOAC (2016). Official Methods of Analysis. (20 ed.). Rockville: AOAC Internacional.
Brasil. Ministério da Agricultura, Pecuária e Abastecimento (2019). Manual de Métodos Oficiais para Análise de Alimentos de Origem Animal (2nd ed.). Brasília: MAPA.
Dey, S. S. & Dora, K. C. (2011). Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology. Journal of Food Science and Technology, 51(1), 16-24. doi: https://doi.org/10.1007/s13197-011-0455-4
Egerton, S., Culloty, S., Whooley, J., Stantone, C. & Ross, R. P. (2018). Characterization of protein hydrolysates from blue whiting (Micromesistius poutassou) and their application in beverage fortification. Food Chemistry, 245, 698–706. doi: https://doi.org/10.1016/j.foodchem.2017.10.107
Foh, M. B. K., Qixing, J., Amadou, I. & Xia, W. S. (2010). Influence of ultrafiltration on antioxidant activity of tilapia (Oreochromis niloticus) protain hydrolysate. Advance Journal of Food Science and Technology, 2(5), 227-235.
Fountoulakis, M. & Lahm, H. (1998). Hydrolysis and amino acid composition analysis of proteins. Journal of Chromatography A, 826, 109-134. doi: https://doi.org/10.1016/s0021-9673(98)00721-3
FAO (2020). The State of World Fisheries and Aquaculture (SOFIA). Rome: FAO.
Giannetto, A., Esposito, E., Lanza, M., Oliva, S., Riolo, K., Di Pietro, S., ... & Macrì, F. (2020). Protein hydrolysates from anchovy (Engraulis encrasicolus) waste: In vitro and in vivo biological activities. Marine drugs, 18(2), 86. doi: https://doi.org/10.3390/md18020086
He, S., Franco, C. & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). International Food Research Journal, 50 (1), 289–297.
Herath, S. S., Haga, Y. & Satoh, S. (2016). Effects of long-term feeding of corn co-product-based diets on growth, fillet color, and fatty acid and amino acid composition of Nilo tilapia, (Oreochromis niloticus). Aquaculture, 464, 205-212. doi: https://doi.org/10.1016/j.aquaculture.2016.06.032
Hoyle, N. & Merrit, J. H. (1994). Quality of fish protein hydrolysate from herring. Journal of Food Science, 1, 4769-4774.
Hsu, K. (2010). Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 122, 42-48. doi: https://doi.org/10.1016/j.foodchem.2010.02.013
Ishak, N. & Sarbon, N. (2018). A Review of Protein Hydrolysates and Bioactive Peptides Deriving from Wastes Generated by Fish Processing. Food Bioprocess Technology, 11, 2-16. doi: https://doi.org/10.1007/s11947-017-1940-1
Jafarpour, A., Gregersen, S., Marciel Gomes, R., Marcatili, P., Hegelund Olsen, T., Jacobsen, C., ... & Sørensen, A. D. M. (2020). Biofunctionality of enzymatically derived peptides from codfish (gadus morhua) frame: Bulk in vitro properties, quantitative proteomics, and bioinformatic prediction. Marine drugs, 18(12), 599. doi: https://10.3390/md18120599
Joglekar, M. & May, T. (1987). Product excellence through design of experiments. Cereal Food World, 32, 857-868.
Kamnerdpetch, C., Weiss, M., Kasper, C. & Scheper, T. (2007). An improvement of potato pulp protein hydrolyzation process by the combination of protease enzyme systems. Enzyme and Microbial Technology, 40, 508-514. doi: https://10.1016/j.enzmictec.2006.05.006
Klomklao, S. & Benjakul, S. (2016). Utilization of tuna processing byproducts: protein hydrolysate from skipjack tuna (Katsuwonus pelamis) viscera, Journal of Food Processing and Preservation, 41, e12970. doi: https://doi.org/10.1111/jfpp.12970
Kristinsson, H. G. & Rasco, B. A. (2010). Fish protein hydrolysates: production, biochemical, and functional properties, Critical Reviews in Food Science and Nutrition, 40(1), 43-81. doi: https://doi.org/10.1080/10408690091189266
Lenth, R. V. (2009). Response-Surface Methods in R, Using RSM. Journal of Statistical Software, 32(7), 1–17. doi: https://10.18637/jss.v032.i07
Liceaga-Gesualdo, A. M. & Li-Chan, E. C. Y. (1999). Functional properties of fish protein hydrolysate from herring (Clupea harengus). Journal of Food Science, 64, 1000-1004. doi: https://doi.org/10.1111/j.1365-2621.1999.tb12268.x
Lopes, A. L., Novelli, P. K., Fernandez-Lafuente, R., Tardioli, P. W. & Giordano, R. L. C. (2020). Glyoxyl-Activated Agarose as Support for Covalently Link Novo-Pro D: Biocatalysts Performance in the Hydrolysis of Casein. Catalysts, 10, 466. doi: https://doi.org/10.3390/catal10050466
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, v. 193, 265-275.
Maluf, J. U., Fiorese, M. L., Maestre, K. L., Passos, F. R., Finkler, J. K., Fleck, J. F. & Borba, C. E. (2019). Optimization of the porcine liver enzymatic hydrolysis conditions. Journal of Food Process Engineering, 2020, e13370. doi: https://doi.org/10.1111/jfpe.13370
Messina, C. M., Manuguerra, S., Arena, R., Renda, G., Ficano, G., Randazzo, M., ... & Santulli, A. (2021). In Vitro Bioactivity of Astaxanthin and Peptides from Hydrolisates of Shrimp (Parapenaeus longirostris) By-Products: From the Extraction Process to Biological Effect Evaluation, as Pilot Actions for the Strategy “From Waste to Profit”. Marine Drugs, 19(4), 216. doi: https://doi.org/10.3390/md19040216
Mullen, A. M., Alvarez, C., Zeugolis, D. I., Neill, E. O. & Drummond, L. (2017). Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains. Meat Science, 132, 90-98. doi: https://doi.org/10.1016/j.meatsci.2017.04.243
Nelson, D. L. & Cox, M. M. (2014). Princípios de bioquímica de Lehninger (6 ed.). Porto Alegre: Artmed.
Ngo, D., Qian, Z., Ryu, B., Park, J. W. & Kim, S. (2010). In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. Journal of Functional Foods, 2, 107-117. doi: https://doi.org/10.1016/j.jff.2010.02.001
Nollet, L. M. L & Toldra, F. (2011). Handbook of Analysis of Edible Animal By-Products. New York: CRC Press.
Ogawa, M. (1999). Alterações da carne de pescado por processamento e estocagem. In: Ogawa, M. & Maia, E. L. Manual de pesca – ciência e tecnologia do pescado (221-249). São Paulo: Varela.
Shen, Q., Guo, R., Dai, Z. & Zhang, Y. (2012). Investigation of Enzymatic Hydrolysis Conditions on the Properties of Protein Hydrolysate from Fish Muscle (Collichthys niveatus) and Evaluation of Its Functional Properties. Journal of Agricultural and Food Chemistry, 60, 5192-5198. doi: https://doi.org/10.1021 / jf205258f
R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/
Raghavan, S. & Kristinsson, H. G. (2008). Antioxidative efficacy of alkali-treated Tilapia protein hydrolysates: A comparative study of five enzymes. Journal of Agricultural and Food Chemistry, 56, 1434-1441. doi: https://doi.org/10.1021/jf0733160.
Roslan, J., Mustapa Kamal, S. M., Md. Yunos, K. F. & Abdullah, N. (2015). Optimization of enzymatic hydrolysis of tilapia (Oreochromis niloticus) byproduct using response surface methodology, International Food Research Journal, 22, 1117-1123.
Roslan, J., Kamal, S. M. M, Md. Yunos, K. F. & Abdullahb, N. (2014a). Optimization of Enzymatic Hydrolysis of Tilapia Muscle (Oreochromis niloticus) using Response Surface Methodology (RSM). Sains Malaysia, 43, 1715-1723.
Roslan, J., Md. Yunos, K. F., Abdullahb, N. & Kamal, S. M. M. (2014b). Characterization of Fish Protein Hydrolysate from Tilapia (Oreochromis niloticus) by-Product. Agriculture and Agricultural Science Procedia, 2, 312-319. doi: https://doi.org/10.1016/j.aaspro.2014.11.044
Silva, J. F. X., Ribeiro, J. F., Silva, J. S., Cahú, T. B. & Bezerra, R. S. (2014). Utilization of tilapia processing waste for the production of fish protein hydrolysate. Animal Feed Science and Technology, 196, 96-106. doi: https://doi.org/10.1016/j.anifeedsci.2014.06.010
Tavano, O. L. (2013). Protein hydrolysis using proteases: an important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90,1-11. doi: https://doi.org/10.1016/j.molcatb.2013.01.011
Toldrá, F., Mora, L. & Reig, M. (2016). New insights into meat by-product utilization. Meat Science, 120, 54-59. doi: https://doi.org/10.1016/j. meatsci.2016.04.021
Tkaczewska, J., Borawska-Dziadkiewicz, J., Kulawik, P., Duda, I., Morawska, M., & Mickowska, B. (2020). The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. Lwt, 117, 108616. doi: https://doi.org/10.1016/j.lwt.2019.108616
Ucak, I., Afreen, M., Montesano, D., Carrillo, C., Tomasevic, I., Simal-Gandara, J., & Barba, F. J. (2021). Functional and bioactive properties of peptides derived from marine side streams. Marine Drugs, 19(2), 71. doi: https://doi.org/10.3390/md19020071
Vázquez, J. A., Blanco, M., Massa, A. E., Amado, I. R. & Pérez-Martín, R. I. (2017). Production of Fish Protein Hydrolysates from Scyliorhinus canicula Discards with Antihypertensive and Antioxidant Activities by Enzymatic Hydrolysis and Mathematical Optimization Using Response Surface Methodology. Marine Drugs, 15, 306. doi: https://doi.org/10.3390/md15100306
Waglay, A. & Karboune, S. (2016). Enzymatic Generation of Peptides from Potato Proteins by Selected Proteases and Characterization of Their Structural Properties, Biotechnology Progress, (32)2, 420-9. doi: https://doi.org/10.1002/btpr.2245
Whitaker, J. R. & Dekker, M., (1994). Principles of Enzymology for the Food Sciences (2th ed.), New York: Marcel Dekker.
Wu, F., Jiang, M., Wen, H., Liu, W., Tian, J., Yang, C. & Huang, F. (2017). Dietary vitamin E effects on growth, fillet textural parameters, and antioxidant capacity of genetically improved farmed tilapia (GIFT), Oreochromis niloticus. Aquaculture International, 25, 991-1003. doi: https://doi.org/10.1007 / s10499-016-0089-7
Yarnpakdee S., Benjakul S., Kristinsson H. G. & Kishimura H. (2015). Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one-and two-step hydrolysis. Journal of Food Science and Technology, 6, 3336-3349. doi: https://doi.org/10.1007 / s13197-014-1394-7
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Joana Karin Finkler; Pitágoras Augusto Piana; Jéssica Fernanda Fleck; Wilson Rogério Boscolo; Aldi Feiden; Altevir Signor; Monica Lady Fiorese

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.