Influence of the lipid bilayer composition on interaction of polyanions with the alpha-toxin ion channel

Authors

DOI:

https://doi.org/10.33448/rsd-v11i8.29321

Keywords:

Phospholipids; Heparin; Ion Channel; Alpha-Hemolysin.

Abstract

The mechanism of interaction among polyanions and Staphylococcal alpha hemolysin (αHL) ion channel still was not elucidated completely. The initial interaction of polyanions with surface membrane of phospholipids is based in Ca2+ bridge formation. Such interaction increases polyanion concentration close to membrane surface that, in turn, increases the probability of polyanion enter into a channel and blocks it. Thus, this study proposed to investigate the role of the lipid membrane composition on interaction of polyanions, such as heparin, with αHL channel. It was found that the effectiveness of heparin to block αHL channels was significantly dependent on the lipid composition of the bilayers. The lipids on their ability to support heparin influence were ranked as follows: PC >> PI » PS > DPhPS ³ PE ³ DPhPC > OChol. These results indicate that the interaction of Ca2+ with lipid membranes depends on the exposure and density of phosphate groups in phospholipids at membrane surface. On the other hand, the effectiveness of heparin to block αHL channel was more strongly correlated with the length of the hydrocarbons chain of fatty acids of the phospholipids. Thus, we demonstrate that the polar head group of phospholipids in the membranes affects their interaction with divalent ions by changing their surface potential, and therefore influences the effectiveness of heparin blockage in the formed channels. The results might be of interest for pharmacology, biomedicine, and research aiming to design mesoscopic pore blockers.

References

Ahmad-Mansour, N., Loubet, P., Pouget, C., Dunyach-Remy, C., Sotto, A., Lavigne, J. P., & Molle, V. (2021). Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins, 13(10), 677.

Alsop, R. J.; Schober, R. M. & Rheinstädter, M. C. (2016). Swelling of phospholipid membranes by divalent metal ions depends on the location of the ions in the bilayers. Soft Matter, 12 (32), 6737-6748.

Arnold, K., Okhi, S., & Krumbiegel, M. (1990). Interaction of dextran sulfate with phospholipid surfaces and liposome aggregation and fusion. Chemistry and Physics of Lipids, 55(3), 301-307.

Bhakdi, S., & Tranum-Jensen, J. (1991). Alpha-toxin of Staphylococcus aureus. Microbiological Reviews, 55(4), 733-751.

Cheung, G. Y., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12(1), 547-569.

Cohen, T. S., Hilliard, J. J., Jones-Nelson, O., Keller, A. E., O’Day, T., Tkaczyk, C., ... & Sellman, B. R. (2016). Staphylococcus aureus α toxin potentiates opportunistic bacterial lung infections. Science Translational Medicine, 8(329), 329ra31-329ra31.

Craven, R. R., Gao, X., Allen, I. C., Gris, D., Wardenburg, J. B., McElvania-TeKippe, E., ... & Duncan, J. A. (2009). Staphylococcus aureus α-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PloS One, 4(10), e7446.

Dinges, M. M., Orwin, P. M., & Schlievert, P. M. (2000). Exotoxins of Staphylococcus aureus. Clinical Microbiology Reviews, 13(1), 16-34.

Guo, J., Xu, Q., Shi, R., Zheng, Z., Mao, H., & Yan, F. (2017). Polyanionic antimicrobial membranes: An experimental and theoretical study. Langmuir, 33(17), 4346-4355.

Huster, D., & Arnold, K. (1998). Ca2+-mediated interaction between dextran sulfate and dimyristoyl-sn-glycero-3-phosphocholine surfaces studied by 2H nuclear magnetic resonance. Biophysical Journal, 75(2), 909-916.

Krasilnikov, O. V., Merzlyak, P. G., Yuldasheva, L. N., Rodrigues, C. G., & Nogueira, R. A. (1999). Heparin influence on α-staphylotoxin formed channel. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1417(1), 167-182.

Li, J., Miller, R., & Möhwald, H. (1996). Characterisation of phospholipid layers at liquid interfaces 2. Comparison of isotherms of insoluble and soluble films of phospholipids at different fluid/water interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 114, 123-130.

Lowy, F. D. (1998). Staphylococcus aureus infections. New England Journal of Medicine, 339(8), 520-532.

McLaughlin, S. G. A., Szabo, G., & Eisenman, G. (1971). Divalent ions and the surface potential of charged phospholipid membranes. The Journal of General Physiology, 58(6), 667-687.

Melo, M. C., Teixeira, L. R., Pol-Fachin, L., & Rodrigues, C. G. (2016). Inhibition of the hemolytic activity caused by Staphylococcus aureus alpha-hemolysin through isatin-Schiff copper (II) complexes. FEMS Microbiology Letters, 363(1), fnv207.

Meshkov, B. B., Tsybyshev, V. P., & Livshits, V. A. (1998). The interaction of double-charged metal ions with monolayers and bilayers of phospholipids. Russian Chemical Bulletin, 47(12), 2410-2414.

Montal, M., & Mueller, P. (1972). Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proceedings of the National Academy of Sciences, 69(12), 3561-3566.

Mueller, P., Rudin, D. O., Tien, H. T., & Wescott, W. C. (1963). Methods for the formation of single bimolecular lipid membranes in aqueous solution. The Journal of Physical Chemistry, 67(2), 534-535.

Nagle, J. F., & Tristram-Nagle, S. (2000). Structure of lipid bilayers. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1469(3), 159-195.

Otto, M. (2014). Staphylococcus aureus toxins. Current Opinion in Microbiology, 17, 32-37.

Papahadjopoulos, D. (1968). Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni-and bi-valent metal ions. Biochimica et Biophysica Acta (BBA)-Biomembranes, 163(2), 240-254.

Qiu, J., Wang, D., Zhang, Y., Dong, J., Wang, J., & Niu, X. (2013). Molecular modeling reveals the novel inhibition mechanism and binding mode of three natural compounds to staphylococcal α-hemolysin. PloS One, 8(11), e80197.

Rani, N., Saravanan, V., Lakshmi, P. T. V., & Annamalai, A. (2014). Inhibition of pore formation by blocking the assembly of Staphylococcus aureus α-hemolysin through a novel peptide inhibitor: An in silco approach. International Journal of Peptide Research and Therapeutics, 20(4), 575-583.

Remington, J. S., & Merigan, T. C. (1970). Synthetic polyanions protect mice against intracellular bacterial infection. Nature, 226(5243), 361-363.

Rolland, J. P., Santaella, C., & Vierling, P. (1996). Molecular packing of highly fluorinated phosphatidylcholines in monolayers. Chemistry and Physics of Lipids, 79(1), 71-77.

Santos, A. L. D., Santos, D. O., Freitas, C. C. D., Ferreira, B. L. A., Afonso, I. F., Rodrigues, C. R., & Castro, H. C. (2007). Staphylococcus aureus: visiting a strain of clinical importance. Jornal Brasileiro de Patologia e Medicina Laboratorial, 43, 413-423.

Sinn, C. G., Antonietti, M., & Dimova, R. (2006). Binding of calcium to phosphatidylcholine–phosphatidylserine membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282, 410-419.

Teixeira, L. R., Merzlyak, P. G., Valeva, A., & Krasilnikov, O. V. (2009). Interaction of heparins and dextran sulfates with a mesoscopic protein nanopore. Biophysical Journal, 97(11), 2894-2903.

Teixeira, L. R., da Silva Júnior, J. J., Vieira, P. H. S., Canto, M. V. G., de Figueirêdo, A. G. M., & da Silva, J. L. V. (2021). Tamoxifen inhibits the anion channel induced by Staphylococcus aureus α-hemolysin: electrophysiological and docking analysis. Research, Society and Development, 10(2), e13010212326-e13010212326.

Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler Jr, V. G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603-661.

Valeva, A., Hellmann, N., Walev, I., Strand, D., Plate, M., Boukhallouk, F., ... & Bhakdi, S. (2006). Evidence that clustered phosphocholine head groups serve as sites for binding and assembly of an oligomeric protein pore. Journal of Biological Chemistry, 281(36), 26014-26021.

Zaretzky, F. R., Pearce-Pratt, R., & Phillips, D. M. (1995). Sulfated polyanions block Chlamydia trachomatis infection of cervix-derived human epithelia. Infection and Immunity, 63(9), 3520-3526.

Downloads

Published

20/06/2022

How to Cite

TEIXEIRA, L. R. .; LIMA, G. S. P. .; BATISTA NETO, A. A. .; RODRIGUES, C. G. .; MACHADO, D. C. . Influence of the lipid bilayer composition on interaction of polyanions with the alpha-toxin ion channel. Research, Society and Development, [S. l.], v. 11, n. 8, p. e32911829321, 2022. DOI: 10.33448/rsd-v11i8.29321. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29321. Acesso em: 17 nov. 2024.

Issue

Section

Agrarian and Biological Sciences