Qualitative assessment of bioethanol production sustainability applying the GBEP methodology: a comparative case between coconut husks and sugarcane bagasse

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.29607

Keywords:

Sustainability; GBEP; E2G; Biomasses.

Abstract

The conventional production of bioethanol takes place through sugar cane processing. Given that Brazil generates abundant lignocellulosic residues, other bioethanol production routes from residual biomasses have been increasingly considered. In this context, this study aimed to assess the sustainability of two second-generation bioethanol (E2G) production routes, one from sugarcane bagasse and the other from coconut husks. To this end, nine indicators proposed by the GBEP (Global Bioenergy Partnership) methodology, namely GHG emissions, non-GHG emissions, water use and efficiency, income changes, bioenergy sector jobs, incidence of occupational injuries, illnesses and deaths, productivity, net energy balance and increased gross value from bioenergy production, were applied. Following the two bioethanol production route assessments through indicator application, a conclusive graphic outlook was constructed to identify the most sustainable route. The sugarcane bagasse production route derives from the Iogen technology and is employed at Raízen's Costa Pinto Plant, which produces this biofuel on an industrial scale, while the coconut husk production route is currently being improved on a bench scale. The indicator analysis demonstrates that, despite the coconut husk route exhibiting greater social sustainability, with better employee remuneration and less frequent injuries, illnesses and occupational deaths, the sugarcane bagasse route shows greater environmental and economic sustainability, due to lower GHG emissions and water extraction, besides higher productivity, and higher net production income. Therefore, the comparative analysis produced by applying the GBEP methodology demonstrates that the sugarcane bagasse route is the most sustainable regarding the production of second-generation bioethanol.

References

ANP – AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. (2016). Perspectivas do etanol na matriz de transportes do Brasil. AMARAL, A. C. N. (org). In: Seminário internacional sobre uso eficente do uso eficiente do etanol. 3, Campinas.

Bensah, E. C., Kádár, Z., & Mensah, M. Y. (2015). Ethanol production from hydrothermallytreated biomass from west Africa. Bioresources, 10 (4), 6522-6538. https://doi.org/10.15376/biores.10.4.6522-6537

BNDES, CGEE. (2008). Bioetanol de cana-de-açúcar: Energia para o desenvolvimento sustentável (1st ed.). Rio de Janeiro: Biblioteca Digital BNDES.

Bronzato, G. R. F., Reis, V. A. C. A., Borro, J. A., Leão, A. L., & Cesarino, I. (2020). Second generation ethanol made from coir husk under the biomass Cascade approach. Molecular Crystals ans Liquid Crystals, 693 (1), 107-114. http://dx.doi.org/10.1080/15421406.2020.1723890

Cabral, M. M. S. (2015). Aproveitamento da casca do coco verde para a produção de etanol de segunda geração. Dissertação (Mestrado em Engenharia Química) – Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Alagoas, Maceió-AL.

Cabral, M. M. S., Abud, A. K. S., Silva, C. E. F., & Almeida, R. M. R. G. (2016). Bioethanol production from coconut husk fiber. Ciência Rural, 46 (10), 1872-1877. https://doi.org/10.1590/0103-8478cr20151331

Ebrahimi, M., Caparanga, A. R., & Villaflores, O. B. (2018). Weak base pretreatment on coconut coir fibers for ethanol production using a simultaneous saccharification and fermentation process. Biofuels, 12 (3), 259-265. https://doi.org/10.1080/17597269.2018.1468979

FS Bioenergia Annual Sustainability Report Crop 2018|2019. (2019). FS Bioenergia. Retrieved January 29, 2021, from https://api.mziq.com/mzfilemanager/v2/d/34aeec8a-d08e-440f-ad7f-324e1e1e7745/5ee41dbfcbc4-2c0b-9e23-1155723499b3?origin=2

FS Bioenergia Annual Sustainability Report Crop 2019|2020 (2020). FS Bioenergia. Retrieved January 29, 2021, from https://api.mziq.com/mzfilemanager/v2/d/34aeec8a-d08e-440f-ad7f-324e1e1e7745/bae91c93-68d4-41da-2bdf-b578d32d64ca?origin=2

GBEP. Global Bioenergy Partnership. (2011). The global bioenergy partnership sustainability indicators for bioenergy (1st.ed.). Food and Agricultural Organization of the United Nations (FAO).

GEITEC. Agência Embrapa de Informação Tecnológica. (2021) Árvore do conhecimento: Coco. Embrapa. Retrieved January 22, 2021, from https://www.agencia.cnptia.embrapa.br/gestor/coco/arvore/CONT000giw3qz5o02wx5ok05vadr1u5iye30.html#

Gonçalves, F. A., Ruiz, H. A., Santos, E. S., Teixeira, J. A., & Macedo, G. R. (2015). Bioethanol production from coconuts and cactus pretreated by autohydrolysis. Industrial Crops and Products. 77 (1), 1-12. https://doi.org/10.1016/j.indcrop.2015.06.041

Gonçalves, F. A., Ruiz, H. A., Santos, E. S., Teixeira, J. A., & Macedo, G. R. (2016). Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renewable Energy, 94 (1), 353-365. https://doi.org/10.1016/j.renene.2016.03.045

Inpasa Agroindustrial S.A. (2021). Inpasa. Retrieved February 1, 2021, from https://www.inpasa.com.br/index.php

Iogen Corporation. (2020). Iogen Corporation. Retrievec September 5, 2020, from http://iogen.ca/cellulosic_ethanol/index.html

Jannah, A. M., & Asip, F. (2015). Bioethanol production from coconut fiber using alcaline pretreatment and acid hydrolysis method. International Journal on Advanced Science Engineering Information Technology, 5 (5), 320-322. https://doi.org/10.18517/ijaseit.5.5.570

Laghari, S. M., Isa, M. H., & Laghari, A. J. (2015). Delignification of coconut husk by microwave assisted chemical pretreatment. Advances in Environmental Biology, 9 (1), 1-5. Retrieved from https://www.researchgate.net/publication/332553312_Delignification_of_coconut_husk_by_microwave_assisted_chemical_pretreatment

Marafon, A. C.; Nunes, M. U. C.; Amaral, A. F. C., & Santos, J. P. (2019). Aproveitamento de cascas do coco para geração de energia térmica: Potencialidades e desafios. Documentos 234. Aracaju: Embrapa Tabuleiros Costeiros.

Melo, L. P., Marques, J. J., & Rocha, I. C. C. (2020). Analysis of methodologies used to assess bioethanol sustainability. Research, Society and Development, 9 (11), 1-16. https://doi.org/10.33448/rsd-v9i11.9794

Melo, L. P. (2021). Avaliação qualitativa da sustentabilidade na produção do bioetanol: um caso comparativo entre a casca do coco e o bagaço da cana-de-açúcar. Dissertação (Mestrado em Engenharia Química) – Programa de Pós-Graduação em Engenharia e Ciências Ambientais. Universidade Federal de Sergipe, São Cristóvão – SE, Brasil.

Nogueira, C. C., Padilha, C. E. A., Jesus, A. A., Souza, D. F. S., Assis, C. F.; Sousa Junior, F. C., & Santos, E. S. (2019). Pressurized pretreatment and simultaneous saccharification and fermentation with in situ detoxification to increase bioethanol production from green coconut fibers. Industrial Crops and Products, 130 (1), 259-266. https://doi.org/10.1016/j.indcrop.2018.12.091

Nova Cana. (2017). Mudanças tecnológicas transformam o perfil de trabalhadores no setor de etanol. Nova Cana. Retrieved March 7, 2021, from https://www.novacana.com/n/cana/trabalhadores/mudancastecnologicas-transformam-o-perfil-de-trabalhadores-usinas-etanol191017#:~:text=Enquanto%20na%20produ%C3%A7%C3%A3o%20de%20etanol,2%20e%203%20sal%C3%A1rios%20m%C3%ADnimos

Nova Cana. (2018). Mecanização da cana avança com desenvolvimento tecnológico. Nova Cana. Retrieved March 7, 2021, from https://www.novacana.com/n/conteudo-patrocinado/mecanizacao-da-canaavanca-com-desenvolvimentotecnologico#:~:text=O%20processo%20de%20mecaniza%C3%A7%C3%A3o%20da,metade%20da%20d%C3%A9cada%20de%202000.&text=Os%20produtores%20de%20cana%20sabem,muitas%20horas%20de%20trabalho%20pesado

Nova Cana. (2021). Propriedades físico-químicas do etanol. Nova Cana. Retrieved January 20, 2021, from https://www.novacana.com/etanol/propriedades-fisico-quimicas

Nunes, M. U. C., Santos, J. R., & Santos, T. C. (2007). Tecnologia para Biodegradação da Casca de Coco Seco e de outros Resíduos do Coqueiro. Circular Técnica 46. Aracaju: Embrapa Tabuleiros Costeiros.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. 2018. Metodologia da pesquisa científica (1st ed).Rio Grande do Sul: UAB/NTE/UFSM. https://www.ufsm.br/app/uploads/sites/358/2019/02/Metodologia-da-Pesquisa-Cientifica_final.pdf

Projeto SOS Mata Atlântica. (2021). Calculadora de CO2. Retrieved April 1, 2021, from https://www.sosma.org.br/calcule-sua-emissao-de-co2/

Raízen. (2020). Raízen. Retrieved September 5, 2020, from https://www.raizen.com.br/ (accessed 05 September 2020).

Raízen 5 years. (2016). Raízen. Retrieved April 24, 2021, from https://www.raizen.com.br/relatorioanual/1516/institucional.php?p=sobre-a-raizen#

Raízen Annual Report 2015|2016 – Inovation. (2016). Raízen. Retrieved April 24, 2021, from https://www.raizen.com.br/relatorioanual/1516/capitulo-nove.php?q=litros#

Raízen Annual Report 2016|2017 – GRI Indicators. (2017). Raízen. Retrieved April 24, 2021, from https://www.raizen.com.br/relatorioanual/1617/pt/indicadores-da-gri.html

Raízen Annual Report 2017|2018. (2018). Raízen. Retrieved November 29, 2020, from https://www.raizen.com.br/relatorioanual/1718/pdf/PT_Raizen_PDF_simplificado.pdf

Raízen Annual Report 2018|2019. (2019). Raízen. Retrieved November 29, 2020, from https://www.raizen.com.br/relatorioanual/1819/pdf/raizen-RA20182019-pt.pdf

Raízen Annual Report 2019|2020. (2020). Raízen. Retrieved November 29, 2020, from https://www.raizen.com.br/relatorioanual/1920/pdf/raizen-RA20192020-pt.pdf

Raízen Annual Report 2019|2020: Indicators Book (GRI). (2020). Raízen. Retrieved November 29, 2020, from https://www.raizen.com.br/relatorioanual/1920/pdf/raizenRA1920-caderno-de-indicadores-pt.pdf

Raízen Sustainability Report 2011|2012. (2012). Raízen. Retrieved March 2, 2021, from https://www.raizen.com.br/relatorioanual/flipbook/280/files/assets/common/downloads/publication.pdf

Raízen Sustainability Report 2012|2013. (2013). Raízen. Retrieved March 2, 2021, from https://www.raizen.com.br/relatorioanual/flipbook/281/files/assets/common/downloads/publication.pdf

Raízen Sustainability Report 2013|2014. (2014). Raízen. Retrieved March 2, 2021, from https://www.raizen.com.br/relatorioanual/flipbook/2004/files/assets/basichtml/page33.html

Raízen Sustainability Report 2014|2015. (2015). Raízen. Retrieved March 2, 2021, from https://www.raizen.com.br/relatorioanual/flipbook/2618/files/assets/common/downloads/publication.pdf

Sangian, H. F., Kristian, J., Rahma, S., Dewi, H. K., Puspasari, D. A., Agnesty, S. Y., Gunawan, S., & Widjaja, A. (2015a). Preparation of reducing sugar hydrolyzed from high-lignin coconut coir dust pretreated by the recycled ionic liquid [mmim][dmp] and combination with alkaline. Bulletin of Chemical Reaction Engineering and Catalysis, 10 (1), 8-22. https://doi.org/10.9767/bcrec.10.1.7058.8-22

Sangian, H. F., Ranggina, D., Ginting, G. M., Purba, A. A., Gunawan, S., & Widjaja, A. (2015b). Study of the preparation or sugar from high-lignin lignocellulose applying subcritical water and enzymatic hydrolysis: Synthesis and consumable cost evaluation. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 16 (1), 13-27. https://www.researchgate.net/publication/290252043

Sangkharak, K., Chookhun, K., Numerung, J., & Prasertsan, P. (2020). Utilization of coconut meal, a waste product of milk processing, as a novel substrate for biodiesel and bioethanol production. Biomass Conversion and Biorefinery, 10 (1), 651-662. https://doi.org/10.1007/s13399-019-00456- .

São Manoel Sustainability Report 2018. (2018). São Manoel. Retrieved January 28, 2021, from https://www.saomanoel.com.br/arquivos/responsabilidade/relatorios/616adbf231c807d7dca9ec25f649e35f0.pdf

Soares, J., Demeke, M. M., Velde, M. V., Moreno, M. R. F., Kerstens, D., Sels, B. F., Verplaetse, A., Fernandes, A. A. R., Thevelein, J. M., & Fernandes, P. M. B. (2017). Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast. Bioresource Technology, 244 (1), 234-242. https://doi.org/10.1016/j.biortech.2017.07.140

Subhedar, P. P., Ray, P., & Gogate, P.R. (2018). Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation. Ultrasonics Sonochemistry, 40 (1), 140-150. https://doi.org/10.1016/j.ultsonch.2017.01.030

VIOLANTE, A. C. (2018). Avaliação dos indicadores de sustentabilidade de usinas sucroalcooeiras da região de Sertãozinho, São Paulo, Brasil: Estudo de caso. Tese (Doutorado em Ciências). Universidade de São Paulo, Piracicaba-SP, Brasil.

Yin, R. K. 2015. Estudo de caso: planejamento e métodos. 5.ed. Porto Alegre: Bookman.

Downloads

Published

14/05/2022

How to Cite

MELO, L. P. de; MARQUES, J. J.; ROCHA, I. C. C. da. Qualitative assessment of bioethanol production sustainability applying the GBEP methodology: a comparative case between coconut husks and sugarcane bagasse. Research, Society and Development, [S. l.], v. 11, n. 7, p. e2411729607, 2022. DOI: 10.33448/rsd-v11i7.29607. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29607. Acesso em: 3 jul. 2022.

Issue

Section

Engineerings