Insertion of silver nanofillers on anodized titanium surface

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.29690

Keywords:

Titanium; Anodizing; Silver nanofiller.

Abstract

Titanium, when kept at ambient atmosphere and room temperature, generates a thin and adherent oxide layer (TiO2) which promotes corrosion restance. Due to this characteristic, the anodizing of titanium has been studied for biomedical applications, but despite excellent biocompatibility, titanium prostheses can generate implant-associated infections. The literature describes the incorporation of silver nanofillers (AgNPs) on the titanium surface, increasing the material's antimicrobial activity and, consequently, reducing the occurrence of infections. Thus, the objective of this work was to identify the most suitable process for incorporation of silver nanofillers on the anodized titanium surface. In this sense, titanium samples were (i) anodized in aqueous citric acid containing silver nitrate (AgNO3), (ii) anodized in aqueous citric acid and subsequently immersed in an aqueous solution of Psidium guajava extract + AgNO3 and (iii) anodized in H2SO4 + H2O2 followed by sealing process conducted in solution containing Psidium guajava extract + AgNO3. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis were performed to verify the efficiency of incorporation of the nanofillers by each method. The results showed to be possible incorporate AgNPs over titanium oxide through the process (i) anodization in citric acid + AgNO3 and (iii) anodization in H2SO4 + H2O2 and sealing in solution containing plant extract + AgNO3. Furthermore, potentiodynamic polarization and cytotoxicity trials were performed on samples from process (iii) and revealed that the incorporation of AgNP's improves the corrosion resistance and favors the antimicrobial effect of the sample’s surfaces.

References

Acosta, T., Mendieta, Nunez, A., Cajero, J. M., Castanho, V. M. (2012). Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. International Journal of Nanomedicine, 20212(7), p. 4777.

Akhavan, O. (2009). Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. Journal of Colloid And Interface Science, 336(1), p. 117-124.

Asoh, H., Nakatani, M., Ono, S. (2016). Fabrication of thick nanoporous oxide films on stainless steel via DC anodization and subsequent biofunctionalization. Surface and Coatings Technology, 307, p. 441-451.

Barbosa, L. V., Marçal, L., Nassar, E. J., Calefi, P. S., Vicente, M. A., Trujillano, R., Rives, V., Gil, A., Korili, S. A., Ciuffi, K. J. (2015). Kaolinite-titanium oxide nanocomposites prepared via sol-gel as heterogeneous photocatalysts for dyes degradation. Catalysis Today, 246, p. 133-142.

Barranco, V., Escudero, M. L., García-Alonso, M. C. (2011). Influence of the microstructure and topography on the barrier properties of oxide scales generated on blasted Ti6Al4V surfaces. Acta Biomaterialia, 7(6), p. 2716-2725.

Dalmau, A., Pina, V. G., Devesa, F., Amigó, V., Muñoz, A. I. (2013). Influence of fabrication process on electrochemical and surface properties of Ti–6Al–4V alloy for medical applications. Electrochimica Acta, 95, p. 102-111.

Di, H., Qiaoxia, L., Yujie, Z., Jingxuan, L., yan, W., Yinchun, H., Xiaojie, L., Song, C., Weiyi, C. (2020). Ag nanoparticles incorporated tannic acid/nanoapatite composite coating on Ti implant surfaces for enhancement of antibacterial and antioxidant properties. Surface and Coatings Technology, 399, p. 126169.

Flores, C. Y., Diaz, C., Rubert, A., Benítez, G. A., Moreno, M. S., Mele, M. A. F. L. de, Salvarezza, R. C. Schilardi, P. L., Vericat, C. (2010). Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa. Journal of Colloid And Interface Science, 350(2), p. 402-408.

Fuhr, L. T., Moura, A. B. D., Carone, C. L. P., Morisso, F. P., Scheffel, L. F., Kunst, S. R., Ferreira, J. Z., Oliveira, C. T. (2020). Colored anodizing of titanium with pyroligneous solutions of black wattle. Matéria (Rio de Janeiro), 25(2), p. 104-122.

Gaur, D., Sharma, S., Ghoshal, S. K. (2021). Modified structures, optical and photovoltaic characteristics of low energy ions beam irradiated TiO2/TiO2-Graphene thin films as electron transport layer in perovskite solar cell. Materials Today: Proceedings, 43(6), p. 3826-3832.

Geetha, M., Singh, A. K., Asokamani, R., Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54(3), p. 397-425.

Hsueh, Y. H., Cheng, C. Y., Chien, H. W, Huang, X. H, Huang, C. W., Wu, C. H., Chen, S. T., Ou, S. F. (2020). Synergistic effects of collagen and silver on the deposition characteristics, antibacterial ability, and cytocompatibility of a collagen/silver coating on titanium. Journal of Alloys and Compounds, 830, p. 15-25.

Indira, K., Mudali, U. K., Nishimura, T., Rajendran, N. (2015). A Review on TiO2 Nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. Journal of Bio-and Tribo-Corrosion, 1(4), p. 127-134.

Kokubo, T., Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27, p. 2907–2915.

Mazare, A., Anghel, A., Surdu-Bob, C., Totea, G., Demetrescu, I., Ionita, D. (2018). Silver doped diamond-like carbon antibacterial and corrosion resistance coatings on titanium. Thin Solid Films, [657, p. 16-23.

Mittal, A. K., Chisti, Y., Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), p. 346-356.

Ono, S., Saito, M., Asoh, H. (2004). Self-Ordering of Anodic Porous Alumina Induced by Local Current Concentration: burning. Electrochemical and Solid-State Letters, 7(7), p. 21-24.

Pornnumpa, N., Jariyaboon, M. (2019). Antibacterial and corrosion resistance properties of anodized AA6061 aluminum alloy. Engineering Journal, 23(4), p. 171-181.

Rahman, Z. U., Haider, W., Pompa, L., Deen, K. M. (2016). Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys. Materials Science and Engineering: C, 58, p. 160-168.

Ramires, I., Guastaldi, A. C. (2002). Estudo do biomaterial Ti-6Al-4V empregando-se técnicas eletroquímicas e XPS. Química Nova, 25(1), p. 10-14.

Roberge, P. R. (1999). Handbook of corrosion engineering. McGraw-Hill Education, 1130 p.

Saurabh, A., Meghana, C. M., Singh, P. K., Verma, P. C. (2022). Titanium-based materials: synthesis, properties, and applications. Materials Today: Proceedings, 56 (1), p. 412-419.

Shan, D., Tao, B., Fang, C., Shao, H., Xie, L., Feng, J., Yan, G. (2021). Anodization of titanium in reduced graphene oxide-citric acid electrolyte. Results in Physics, 24, p. 104060.

Van Hengel, I. A. J., Putra, N. E., Tierolf, M. W. A. M., Minneboo, M., Fluit, A. C., Fratila-Apachitei, L. E., Apachitei, I., Zadpoor, A. A. (2020). Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria. Acta Biomaterialia, 107, p. 325-337.

Wan, J., Yan, X., Ding, J., Wang, M., Hu, K. (2009). Self-organized highly ordered TiO2 nanotubes in organic aqueous system. Materials Characterization, 60, p.1534–1540.

Wolynec, S. (2013). Técnicas Eletroquímicas em Corrosão. São Paulo: Edusp, 176 p.

Xing, J., Xia, Z., Hu, J., Zhang, Y., Zhong, L. (2013) Time dependence of growth and crystallization of anodic titanium oxide films in potentiostatic mode. Corrosion Science, 75, p. 212-219.

Young, L. (1961). Anodic Oxid Films. Londres: Academic Press, 337 p.

Published

18/05/2022

How to Cite

FERNANDES, M.; KUNST, S. R.; MORISSO, F. D. P. .; CARÚS, L. A. .; ZIULKOSKI, A. L.; OLIVEIRA, C. T. . Insertion of silver nanofillers on anodized titanium surface . Research, Society and Development, [S. l.], v. 11, n. 7, p. e13711729690, 2022. DOI: 10.33448/rsd-v11i7.29690. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29690. Acesso em: 6 jul. 2022.

Issue

Section

Engineerings