Macro environmental sensitivity for reproductive trait in Holstein cattle: a systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i6.29705

Keywords:

Environment; Lactation curve; Genotype; Reaction norm e robust.

Abstract

The genotype-environment interaction (IGA) is caused by the variation of environmental genetic sensitivity that can be subdivided into macro and micro environmental. Macro environmental sensitivity is genetic sensitivity to macroenvironments, while micro environmental sensitivity is genetic sensitivity to microenvironments. Therefore, the objective of this work was to identify, evaluate and summarize the available data from the primary literature on IGA (environmental macro sensitivity) in Holstein cattle. For this, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was used. To identify the articles on the subject, a search was carried out in the Google Scholar and Web of Science databases, following some selection and exclusion criteria. A total of 188 articles were captured, at the end of the selection process, 13 eligible articles remained. All IGA works investigated for at least one characteristic showed significant IGA, between or even within the same country. Thus, investigating the existence or not of IGA is an important factor for the genetic progress of herds.

References

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Atrian-Afiani, F., Gao, H., S. J. (2020). Genotype by climate zone interactions for fertility, somatic cell score, and production in Iranian Holsteins. Elsevier. https://www.sciencedirect.com/science/article/pii/S0022030221008687

Chen, S., Freitas, P., Oliveira, H., S. L. (2021). Genotype-by-environment interactions for reproduction, body composition, and growth traits in maternal-line pigs based on single-step genomic reaction. Springer. https://link.springer.com/article/10.1186/s12711-021-00645-y

Chuma-Alvarez, J. L., Montaldo, H. H., Lizana, C., Olivares, M. E., & Ruiz-López, F. J. (2021). Genotype × region and genotype × production level interactions in Holstein cows. Animal, 15(9), 100320. https://doi.org/10.1016/j.animal.2021.100320

Craig, H., Stachowicz, K., Black, M., & Parry, M. (2018). genótipo por ambiente em características de fertilidade em vacas leiteiras da Nova Zelândia. Jornal de Laticínios. https://www.sciencedirect.com/science/article/pii/S0022030218308683

Fleming, A., Abdalla, E. A., Maltecca, C., & Baes, C. F. (2018). Invited review: Reproductive and genomic technologies to optimize breeding strategies for genetic progress in dairy cattle. Archives Animal Breeding, 61(1), 43–57. https://doi.org/10.5194/aab-61-43-2018

Gautier, M., & Naves, M. (2011). Footprints of selection in the ancestral admixture of a New World Creole cattle breed. Molecular Ecology, 20(15), 3128–3143. https://doi.org/10.1111/j.1365-294X.2011.05163.x

Hammami, H., Rekik, B., & Gengler, N. (2009). Genotype by Environment Interaction in Dairy Cattle. Biotechnol. Agron. Soc. Environ., 13(1), 151–167. https://doi.org/10.1007/978-1-4020-9005-9_10

Ismael, A., Strandberg, E., Berglund, B., & Fogh, A. (2016a). Sazonalidade da fertilidade medida por características de atividade física em vacas Holandesas. Journal of Dairy. https://www.sciencedirect.com/science/article/pii/S0022030216000606

Ismael, A., Strandberg, E., Berglund, B., & Kargo, M. (2016b). genótipo por ambiente para o intervalo do parto à primeira inseminação em relação ao mês do parto e localização geográfica em vacas Holandesas em. Journal of Dairy. https://www.sciencedirect.com/science/article/pii/S0022030216301795

Iung, L. H. de S., Mulder, H. A., Neves, H. H. de R., & Carvalheiro, R. (2018). Genomic regions underlying uniformity of yearling weight in Nellore cattle evaluated under different response variables. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-5003-4

Liu, A., Su, G., Höglund, J., Zhang, Z., Thomasen, J., Christiansen, I., Wang, Y., & Kargo, M. (2019). Genotype by environment interaction for female fertility traits under conventional and organic production systems in Danish Holsteins. Journal of Dairy Science, 102(9), 8134–8147. https://doi.org/10.3168/jds.2018-15482

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Altman, D., Antes, G., Atkins, D., Barbour, V., Barrowman, N., Berlin, J. A., Clark, J., Clarke, M., Cook, D., D’Amico, R., Deeks, J. J., Devereaux, P. J., Dickersin, K., Egger, M., Ernst, E., Tugwell, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7). https://doi.org/10.1371/journal.pmed.1000097

Montaldo, H., & Pelcastre-Cruz, A. (2017). Interação genótipo x ambiente para características de fertilidade e produção de leite em bovinos da raça Holandesa canadense, mexicana e americana. Revista Espanhola De. https://sia.revistas.inia.es/index.php/sjar/article/view/10317

Muasya, T., Peters, K., Science, A. K.-L., & 2014, U. (2014). of diverse sire origins and environmental sensitivity in Holstein-Friesian cattle for milk yield and fertility traits between selection and production environments. Elsevier.

Neser, F. W. C., van Wyk, J. B., & Ducrocq, V. (2014). A preliminary investigation into genotype x environment interaction in South African Holstein cattle for reproduction and production traits. South African Journal of Animal Sciences, 44(5), S75–S79. https://doi.org/10.4314/sajas.v44i5.15

Sancristobal-Gaudy, M., Elsen, J. M., Bodin, L., & Chevalet, C. (1998). Prediction of the response tea selection for canalisation of a continuous trait in animal breeding. Genetics Selection Evolution, 30(5), 423–451. https://doi.org/10.1051/gse:19980502

Santana, M. L., Bignardi, A. B., Pereira, R. J., Stefani, G., & El Faro, L. (2017). Genetics of heat tolerance for milk yield and quality in Holsteins. Animal, 11(1), 4–14. https://doi.org/10.1017/S1751731116001725

Santos, J. C. J., Malhado, C. C. H. M., Carneiro, P. L. S. P., de Rezende, M. P. G., & Cobuci, J. A. (2020). Genotype-environment interaction for age at first calving in Holstein cows in Brazil. 9(February), 100098. https://doi.org/10.1016/j.vas.2020.100098

Shi, R., Brito, L. F., Liu, A., Luo, H., Chen, Z., Liu, L., Guo, G., Mulder, H., Ducro, B., van der Linden, A., & Wang, Y. (2021). Genotype-by-environment interaction in Holstein heifer fertility traits using single-step genomic reaction norm models. BMC Genomics, 22(1), 1–20. https://doi.org/10.1186/s12864-021-07496-3

Wahinya, P. K., Jeyaruban, G., Swan, A., & Magothe, T. (2020). Estimation of genetic parameters for milk and fertility traits within and between low, medium and high dairy production systems in Kenya to account for genotype-by-environment interaction. Journal of Animal Breeding and Genetics, 137(5), 495–509. https://doi.org/10.1111/JBG.12473

Published

11/05/2022

How to Cite

MARTINS, R. Macro environmental sensitivity for reproductive trait in Holstein cattle: a systematic review. Research, Society and Development, [S. l.], v. 11, n. 6, p. e56711629705, 2022. DOI: 10.33448/rsd-v11i6.29705. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29705. Acesso em: 28 may. 2022.

Issue

Section

Agrarian and Biological Sciences