Macro environmental sensitivity for reproductive trait in Holstein cattle: a systematic review




Environment; Lactation curve; Genotype; Reaction norm e robust.


The genotype-environment interaction (IGA) is caused by the variation of environmental genetic sensitivity that can be subdivided into macro and micro environmental. Macro environmental sensitivity is genetic sensitivity to macroenvironments, while micro environmental sensitivity is genetic sensitivity to microenvironments. Therefore, the objective of this work was to identify, evaluate and summarize the available data from the primary literature on IGA (environmental macro sensitivity) in Holstein cattle. For this, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was used. To identify the articles on the subject, a search was carried out in the Google Scholar and Web of Science databases, following some selection and exclusion criteria. A total of 188 articles were captured, at the end of the selection process, 13 eligible articles remained. All IGA works investigated for at least one characteristic showed significant IGA, between or even within the same country. Thus, investigating the existence or not of IGA is an important factor for the genetic progress of herds.


Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975.

Atrian-Afiani, F., Gao, H., S. J. (2020). Genotype by climate zone interactions for fertility, somatic cell score, and production in Iranian Holsteins. Elsevier.

Chen, S., Freitas, P., Oliveira, H., S. L. (2021). Genotype-by-environment interactions for reproduction, body composition, and growth traits in maternal-line pigs based on single-step genomic reaction. Springer.

Chuma-Alvarez, J. L., Montaldo, H. H., Lizana, C., Olivares, M. E., & Ruiz-López, F. J. (2021). Genotype × region and genotype × production level interactions in Holstein cows. Animal, 15(9), 100320.

Craig, H., Stachowicz, K., Black, M., & Parry, M. (2018). genótipo por ambiente em características de fertilidade em vacas leiteiras da Nova Zelândia. Jornal de Laticínios.

Fleming, A., Abdalla, E. A., Maltecca, C., & Baes, C. F. (2018). Invited review: Reproductive and genomic technologies to optimize breeding strategies for genetic progress in dairy cattle. Archives Animal Breeding, 61(1), 43–57.

Gautier, M., & Naves, M. (2011). Footprints of selection in the ancestral admixture of a New World Creole cattle breed. Molecular Ecology, 20(15), 3128–3143.

Hammami, H., Rekik, B., & Gengler, N. (2009). Genotype by Environment Interaction in Dairy Cattle. Biotechnol. Agron. Soc. Environ., 13(1), 151–167.

Ismael, A., Strandberg, E., Berglund, B., & Fogh, A. (2016a). Sazonalidade da fertilidade medida por características de atividade física em vacas Holandesas. Journal of Dairy.

Ismael, A., Strandberg, E., Berglund, B., & Kargo, M. (2016b). genótipo por ambiente para o intervalo do parto à primeira inseminação em relação ao mês do parto e localização geográfica em vacas Holandesas em. Journal of Dairy.

Iung, L. H. de S., Mulder, H. A., Neves, H. H. de R., & Carvalheiro, R. (2018). Genomic regions underlying uniformity of yearling weight in Nellore cattle evaluated under different response variables. BMC Genomics, 19(1).

Liu, A., Su, G., Höglund, J., Zhang, Z., Thomasen, J., Christiansen, I., Wang, Y., & Kargo, M. (2019). Genotype by environment interaction for female fertility traits under conventional and organic production systems in Danish Holsteins. Journal of Dairy Science, 102(9), 8134–8147.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Altman, D., Antes, G., Atkins, D., Barbour, V., Barrowman, N., Berlin, J. A., Clark, J., Clarke, M., Cook, D., D’Amico, R., Deeks, J. J., Devereaux, P. J., Dickersin, K., Egger, M., Ernst, E., Tugwell, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7).

Montaldo, H., & Pelcastre-Cruz, A. (2017). Interação genótipo x ambiente para características de fertilidade e produção de leite em bovinos da raça Holandesa canadense, mexicana e americana. Revista Espanhola De.

Muasya, T., Peters, K., Science, A. K.-L., & 2014, U. (2014). of diverse sire origins and environmental sensitivity in Holstein-Friesian cattle for milk yield and fertility traits between selection and production environments. Elsevier.

Neser, F. W. C., van Wyk, J. B., & Ducrocq, V. (2014). A preliminary investigation into genotype x environment interaction in South African Holstein cattle for reproduction and production traits. South African Journal of Animal Sciences, 44(5), S75–S79.

Sancristobal-Gaudy, M., Elsen, J. M., Bodin, L., & Chevalet, C. (1998). Prediction of the response tea selection for canalisation of a continuous trait in animal breeding. Genetics Selection Evolution, 30(5), 423–451.

Santana, M. L., Bignardi, A. B., Pereira, R. J., Stefani, G., & El Faro, L. (2017). Genetics of heat tolerance for milk yield and quality in Holsteins. Animal, 11(1), 4–14.

Santos, J. C. J., Malhado, C. C. H. M., Carneiro, P. L. S. P., de Rezende, M. P. G., & Cobuci, J. A. (2020). Genotype-environment interaction for age at first calving in Holstein cows in Brazil. 9(February), 100098.

Shi, R., Brito, L. F., Liu, A., Luo, H., Chen, Z., Liu, L., Guo, G., Mulder, H., Ducro, B., van der Linden, A., & Wang, Y. (2021). Genotype-by-environment interaction in Holstein heifer fertility traits using single-step genomic reaction norm models. BMC Genomics, 22(1), 1–20.

Wahinya, P. K., Jeyaruban, G., Swan, A., & Magothe, T. (2020). Estimation of genetic parameters for milk and fertility traits within and between low, medium and high dairy production systems in Kenya to account for genotype-by-environment interaction. Journal of Animal Breeding and Genetics, 137(5), 495–509.



How to Cite

MARTINS, R. Macro environmental sensitivity for reproductive trait in Holstein cattle: a systematic review. Research, Society and Development, [S. l.], v. 11, n. 6, p. e56711629705, 2022. DOI: 10.33448/rsd-v11i6.29705. Disponível em: Acesso em: 28 may. 2022.



Agrarian and Biological Sciences