Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm
DOI:
https://doi.org/10.33448/rsd-v11i7.29720Keywords:
Paraconsistent Annotated Logic; Learning from demonstration; Artificial Intelligence; Teaching; Paraconsistent artificial neural network.Abstract
The Annotated Paraconsistent Logic - LPA is a non-classical logic, based on concepts that allow, under certain conditions, to accept the contradiction in its foundations, without invalidating the conclusions. Mathematical interpretations in its associated lattice make it possible to obtain equations and algorithm constructions, which form efficient paraconsistent analysis networks, in treating signals simulating learning. The algorithm used in this research is called Paraconsistent Artificial Neural Cell of Learning (CNAPap), and was created from equations based on LPA. With standardized signals repeatedly applied to its input, CNAPap is capable of gradually storing this information, increasing or decreasing its level of response at the output with asymptotic variation, controlled by a Learning Factor (FA). To run the tests, a set of five CNAPaps forming a learning Paraconsistent Artificial Neural Network (RNAPap), was implemented in an ATMEGA 328p microcontroller and several tests were carried out to validate its operation, acting on learning by demonstration (LfD) in a Robot Manipulator. Considering the fragile mechanical structure of the Robot Manipulator, and the sensor devices adapted to respond to the standards, the laboratory results obtained in the various tests presented were satisfactory, and the microprocessed system built responded efficiently, where the levels of correct answers corresponded to between 75 % to 90%, at all stages of the LfD method. The results of comparative studies showed that RNAPap has dynamic properties capable of acting both in the demonstration learning method and in the imitation method.
References
Abe, J. M., Akama, S., Nakamatsu, K., & Da Silva Filho, J. I. (2018). Some Aspects on Complementarity and Heterodoxy in Non-Classical Logics. Procedia Computer Science, 126, 1253–1260. https://doi.org/10.1016/j.procs.2018.08.068
Mario, M. C., Garcia, D. V., Da Silva Filho, J. I., Silveira Junior, L., & Barbuy, H. S. (2021). Characterization and classification of numerical data patterns using Annotated Paraconsistent Logic and the effect of contradiction. Research, Society and Development, 10(13), e283101320830, https://rsdjournal.org/index.php/rsd/article/view/20830
Andreas, J., Klein, D., & Levine, S. (2017) Modular multitask reinforcement learning with policy sketches. In Proceedings of the 34th International Conference on Machine Learning. 70, 166–175. JMLR. org, 2017. 1, 2
Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469-483, https://doi.org/10.1016/j.robot.2008.10.024.
Billard, A., Calinon, S., Dillmann, R., & Schaal, S. (2008). Robot programming by demonstration. In Siciliano, B., and Khatib, O., eds., Springer Handbook of Robotics. Springer Berlin Heidelberg. 2008, 1371–1394.
Chi, M., Yao, Y., Liu, Y., & Zhong, M. Learning, Generalization, and Obstacle Avoidance with Dynamic Movement Primitives and Dynamic Potential Fields. Appl. Sci. 2019, 9, 1535. https://doi.org/10.3390/app9081535
Corrêa, M. P., Machado, A. C., Da Silva Filho, J. I., Garcia, D. V., Mario, M. C., & Sedano, C. T. S. (2022). Paraconsistent annotated logic applied to industry assets condition monitoring and failure prevention based on vibration signatures. Research, Society and Development, [S. l.], 11(1), e14211125104, 2022. 10.33448/rsd-v11i1.25104.
Da Costa N. C. A., & Abe J. M. (2000). Paraconsistência em Informática e Inteligência Artificial, Ciência • Estud. Av. 14 (39) • Https://Doi.Org/10.1590/S0103-40142000000200012
Da Silva Filho, J. I., Abe, J. M., Marreiro, A. D. L., Martinez, A. A. G., Torres, C. R, Rocco, A., Côrtes, H. M., Mario, M. C., Pacheco, M. T. T., Garcia, D. V., & Blos, M. F. (2021) Paraconsistent annotated logic algorithms applied in management and control of communication network routes Sensors, 21(12), 4219 https://doi.org/10.3390/s21124219
Da Silva Filho, J. I., Lambert-Torres, G., & Abe. J. M. (2010). Uncertainty treatment using paraconsistent logic—introducing paraconsistent artificial neural networks. 2010; 320.
Ekvall, S., & Kragic, D. (2008). Robot learning from demonstration: A task-level planning approach. International Journal of Advanced Robotic Systems, 5(3):223234.
Garcia, D. V., Da Silva Filho, J. I., Silveira Jr, L, Pacheco, M. T. T., Abe, J. M., et al. Analysis of Raman spectroscopy data with algorithms based on paraconsistent logic for characterization of skin cancer lesions. Vibrational Spectroscopy 2019;103;102929.
Gienger, M., Mühlig, M., & Steil, J. J. (2010). Imitating object movement skills with robots — A task-level approach exploiting generalization and invariance. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1262-1269, 10.1109/IROS.2010.5649990.
Haykin, S. (2001) Redes Neurais: Princípios e Práticas. (2a. ed.): Bookman.
Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2002). Learning rhythmic movements by demonstration using nonlinear oscillators. In Proceedings of the IEEE/RSJ Int. Conference on Intelligent Robots and Systems (IROS2002), 2002, pages 958-963.
Liu, T., & Lemeire, J. (2017) Efficient and Effective Learning of HMMs Based on Identification of Hidden States. Mathematical Problems in Engineering, vol. 2017, Article ID 7318940, 26 pages, 2017. https://doi.org/10.1155/2017/7318940
Mario, M. C., Garcia, D. V., Da Silva Filho, J. I., Silveira Júnior, L., & Barbuy, H. S. (2021). Characterization and classification of numerical data patterns using Annotated Paraconsistent Logic and the effect of contradiction. Research, Society and Development, [S. l.], 10(13), e283101320830, 10.33448/rsd-v10i13.20830.
Mohseni-Kabir, A., Rich, C., Chernova, S., Sidner, C. L., & Miller, D. (2015). Interactive hierarchical task learning from a single demonstration. In Proceedings of the Tenth Annual - ACM/IEEE International Conference on Human-Robot Interaction, HRI ’15, 2015, 205–212. New York, NY, USA: ACM
Nicolescu, M. N., & Mataric, M. J. (2003). Natural methods for robot task learning: Instructive demonstrations, generalization and practice. In Proceedings of the second international joint conference on Autonomous agents and multiagent systems, 2003, 241–248. ACM.
Niekum, S., Osentoski, S., Konidaris, G., Chitta, S., Marthi, B., & Barto, A. G. (2015) Learning grounded finite-state representations from unstructured demonstrations. The International Journal of Robotics Research. 2015; 34(2):131-157. 10.1177/0278364914554471
Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., & Schaal, S. (2013). From dynamic movement primitives to associative skill memories. Robotics and Autonomous Systems, 2013, 61(4), 351–361.
Rosário, J. M. (2009) Automação Industrial: Editora: Baraúna. 2009. 517 págs. ISBN-13: 978-8579230004
Schaal, S. (2006) Dynamic movement primitives-a framework for motor control in humans and humanoid robotics. in Adaptive Motion of Animals and Machines. Springer, 2006, pp. 261–280.
Gebin, L. G. G., Salgado, R. M., & Nogueira, D. A. (2020). Wind Power Forecast: Ensemble Model Based in Statistical and Machine Learning Models. Research, Society and Development, 9(12), e38291211251, 10.33448/rsd-v9i12.11251.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Paulino Machado Gomes; Cláudio Luís Magalhães Fernandes; João Inácio da Silva Filho; Rodrigo Silvério da Silveira; Leonardo do Espírito Santo; Mauricio Conceição Mario; Vitor da Silva Rosa; Germano Lambert Torres
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.