Fracture resistance of endodontically treated teeth and restored with different fiber posts in distinct diameters

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.30169

Keywords:

Tooth, non vital; Post and Core Technique; Dental Restoration, Permanent; Compressive Strength; Tooth fractures.

Abstract

Objective: The aim of this in vitro study was to evaluate the fracture resistance of endodontically treated teeth restored with different intraradicular posts (carbon fibers, glass, or quartz) with varying post diameters (narrow, medium, or large). Methodology: One hundred and twenty bovine incisors were endodontically treated and the post space was prepared.  The teeth were classified according to distinct diameters post space [Narrow (0.91-1.49mm), Medium (1.5-2.08mm), Large (2.09mm-2.67mm)] and randomly allocated to four restorative treatments: control (CO) - without post; and glass fiber (GF), carbon (CF) or quartz (QF) posts. The posts were cemented with dual-cure resin cement (Duo Link, Bisco, Schaumburg, United States) and the coronary portion was reconstructed with dual-cure resin composite (Bis-Core, Bisco, Schaumburg, United States). Fracture resistance values (N) were analyzed by two-way ANOVA and Bonferroni test (α=0.05). Results: The carbon fiber post (CF) was mechanical behavior similar to the other evaluated posts, regardless of the diameter. The control group (without post) showed the highest values of fracture resistance (1013.8 - 1127.2 N) in relation to the groups with the different evaluated posts (236.1 - 615.1 N). Within the same material, the diameter influenced the fracture strength only of the quartz fiber post, with the highest values for diameter large. Conclusion: A larger diameter only gives greater fracture resistance for QF; CF posts have similar resistance to other posts, regardless of diameter; and for large diameter, the type of post used does not differ in fracture resistance.

References

Barreto, M. S., Moraes Rdo, A., Rosa, R. A., Moreira, C. H., Só, M. V., & Bier, C. A. (2012). Vertical root fractures and dentin defects: effects of root canal preparation, filling, and mechanical cycling. J Endod, 38(8), 1135-1139. https://doi.org/10.1016/j.joen.2012.05.002

Boschian Pest, L., Guidotti, S., Pietrabissa, R., & Gagliani, M. (2006). Stress distribution in a post-restored tooth using the three-dimensional finite element method. J Oral Rehabil, 33(9), 690-697. https://doi.org/10.1111/j.1365-2842.2006.01538.x

de Oliveira, J. A., Pereira, J. R., Lins do Valle, A., & Zogheib, L. V. (2008). Fracture resistance of endodontically treated teeth with different heights of crown ferrule restored with prefabricated carbon fiber post and composite resin core by intermittent loading. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 106(5), e52-57. https://doi.org/10.1016/j.tripleo.2008.06.015

Dikbas, I., Tanalp, J., Ozel, E., Koksal, T., & Ersoy, M. (2007). Evaluation of the effect of different ferrule designs on the fracture resistance of endodontically treated maxillary central incisors incorporating fiber posts, composite cores and crown restorations. J Contemp Dent Pract, 8(7), 62-69.

Dotto, L., Girotto, L. P. S., Correa Silva Sousa, Y. T., Pereira, G. K. R., Bacchi, A., & Sarkis-Onofre, R. (2022). Factors influencing the clinical performance of the restoration of endodontically treated teeth: An assessment of systematic reviews of clinical studies. J Prosthet Dent. https://doi.org/10.1016/j.prosdent.2022.03.030

Ferrari, M., Vichi, A., & Grandini, S. (2001). Efficacy of different adhesive techniques on bonding to root canal walls: an SEM investigation. Dent Mater, 17(5), 422-429. https://doi.org/10.1016/s0109-5641(00)00102-0

Figueiredo, F. E., Martins-Filho, P. R., & Faria, E. S. A. L. (2015). Do metal post-retained restorations result in more root fractures than fiber post-retained restorations? A systematic review and meta-analysis. J Endod, 41(3), 309-316. https://doi.org/10.1016/j.joen.2014.10.006

Galhano, G. A., Valandro, L. F., de Melo, R. M., Scotti, R., & Bottino, M. A. (2005). Evaluation of the flexural strength of carbon fiber-, quartz fiber-, and glass fiber-based posts. J Endod, 31(3), 209-211. https://doi.org/10.1097/01.don.0000137652.49748.0c

Kremeier, K., Fasen, L., Klaiber, B., & Hofmann, N. (2008). Influence of endodontic post type (glass fiber, quartz fiber or gold) and luting material on push-out bond strength to dentin in vitro. Dent Mater, 24(5), 660-666. https://doi.org/10.1016/j.dental.2007.06.029

Marchi, G. M., Mitsui, F. H., & Cavalcanti, A. N. (2008). Effect of remaining dentine structure and thermal-mechanical aging on the fracture resistance of bovine roots with different post and core systems. Int Endod J, 41(11), 969-976. https://doi.org/10.1111/j.1365-2591.2008.01459.x

Martins, M. D., Junqueira, R. B., de Carvalho, R. F., Lacerda, M., Faé, D. S., & Lemos, C. A. A. (2021). Is a fiber post better than a metal post for the restoration of endodontically treated teeth? A systematic review and meta-analysis. J Dent, 112, 103750. https://doi.org/10.1016/j.jdent.2021.103750

Meng, Q., Ma, Q., Wang, T., & Chen, Y. (2018). An in vitro study evaluating the effect of ferrule design on the fracture resistance of endodontically treated mandibular premolars after simulated crown lengthening or forced eruption methods. BMC Oral Health, 18(1), 83. https://doi.org/10.1186/s12903-018-0549-8

Munari, L. S., Bowles, W. R., & Fok, A. S. L. (2019). Relationship between Canal Enlargement and Fracture Load of Root Dentin Sections. Dent Mater, 35(5), 818-824. https://doi.org/10.1016/j.dental.2019.02.015

Palepwad, A. B., & Kulkarni, R. S. (2020). In vitro fracture resistance of zirconia, glass-fiber, and cast metal posts with different lengths. J Indian Prosthodont Soc, 20(2), 202-207. https://doi.org/10.4103/jips.jips_321_19

Parisi, C., Valandro, L. F., Ciocca, L., Gatto, M. R., & Baldissara, P. (2015). Clinical outcomes and success rates of quartz fiber post restorations: A retrospective study. J Prosthet Dent, 114(3), 367-372. https://doi.org/10.1016/j.prosdent.2015.03.011

Rodríguez-Cervantes, P. J., Sancho-Bru, J. L., Barjau-Escribano, A., Forner-Navarro, L., Pérez-González, A., & Sánchez-Marín, F. T. (2007). Influence of prefabricated post dimensions on restored maxillary central incisors. J Oral Rehabil, 34(2), 141-152. https://doi.org/10.1111/j.1365-2842.2006.01720.x

Santini, M. F., Rippe, M. P., Franciscatto, G. J., da Rosa, R. A., Valandro, L. F., Só, M. V., & Bier, C. A. (2014). Canal preparation and filling techniques do not influence the fracture resistance of extensively damaged teeth. Braz Dent J, 25(2), 129-135. https://doi.org/10.1590/0103-6440201302392

Santos-Filho, P. C., Veríssimo, C., Soares, P. V., Saltarelo, R. C., Soares, C. J., & Marcondes Martins, L. R. (2014). Influence of ferrule, post system, and length on biomechanical behavior of endodontically treated anterior teeth. J Endod, 40(1), 119-123. https://doi.org/10.1016/j.joen.2013.09.034

Schestatsky, R., Dartora, G., Felberg, R., Spazzin, A. O., Sarkis-Onofre, R., Bacchi, A., & Pereira, G. K. R. (2019). Do endodontic retreatment techniques influence the fracture strength of endodontically treated teeth? A systematic review and meta-analysis. J Mech Behav Biomed Mater, 90, 306-312. https://doi.org/10.1016/j.jmbbm.2018.10.030

Shu, X., Mai, Q. Q., Blatz, M., Price, R., Wang, X. D., & Zhao, K. (2018). Direct and Indirect Restorations for Endodontically Treated Teeth: A Systematic Review and Meta-analysis, IAAD 2017 Consensus Conference Paper. J Adhes Dent, 20(3), 183-194. https://doi.org/10.3290/j.jad.a40762

Signore, A., Benedicenti, S., Kaitsas, V., Barone, M., Angiero, F., & Ravera, G. (2009). Long-term survival of endodontically treated, maxillary anterior teeth restored with either tapered or parallel-sided glass-fiber posts and full-ceramic crown coverage. J Dent, 37(2), 115-121. https://doi.org/10.1016/j.jdent.2008.10.007

Sorrentino, R., Di Mauro, M. I., Ferrari, M., Leone, R., & Zarone, F. (2016). Complications of endodontically treated teeth restored with fiber posts and single crowns or fixed dental prostheses-a systematic review. Clin Oral Investig, 20(7), 1449-1457. https://doi.org/10.1007/s00784-016-1919-8

Tsintsadze, N., Margvelashvili-Malament, M., Natto, Z. S., & Ferrari, M. (2022). Comparing survival rates of endodontically treated teeth restored either with glass-fiber-reinforced or metal posts: A systematic review and meta-analyses. J Prosthet Dent. https://doi.org/10.1016/j.prosdent.2022.01.003

Vadavadagi, S. V., Dhananjaya, K. M., Yadahalli, R. P., Lahari, M., Shetty, S. R., & Bhavana, B. L. (2017). Comparison of Different Post Systems for Fracture Resistance: An in vitro Study. J Contemp Dent Pract, 18(3), 205-208.

Wandscher, V. F., Bergoli, C. D., de Oliveira, A. F., Kaizer, O. B., Souto Borges, A. L., Limberguer Ida, F., & Valandro, L. F. (2015). Fatigue surviving, fracture resistance, shear stress and finite element analysis of glass fiber posts with different diameters. J Mech Behav Biomed Mater, 43, 69-77. https://doi.org/10.1016/j.jmbbm.2014.11.016

Downloads

Published

04/06/2022

How to Cite

MATOS, L. M. R. de; SILVA, M. L. .; CORDEIRO, T. O. .; LIMA, D. M. .; SOUZA, E. M. .; SILVA, A. M. .; SERAIDARIAN, P. I. Fracture resistance of endodontically treated teeth and restored with different fiber posts in distinct diameters. Research, Society and Development, [S. l.], v. 11, n. 7, p. e56111730169, 2022. DOI: 10.33448/rsd-v11i7.30169. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30169. Acesso em: 19 apr. 2024.

Issue

Section

Health Sciences