Resistência à fratura de dentes tratados endodonticamente e restaurados com diferentes pinos de fibra em diâmetros distintos

Autores

DOI:

https://doi.org/10.33448/rsd-v11i7.30169

Palavras-chave:

Dente não Vital; Técnica para Retentor Intrarradicular; Restauração Dentária Permanente; Força Compressiva; Fraturas dos dentes.

Resumo

Objetivo: O objetivo deste estudo in vitro foi avaliar a resistência à fratura de dentes tratados endodonticamente restaurados com diferentes pinos intrarradiculares (fibras de carbono, vidro ou quartzo) com diâmetros variados (estreito, médio ou grande). Metodologia: Cento e vinte incisivos bovinos foram tratados endodonticamente e o espaço do pino foi preparado. Os dentes foram classificados de acordo com os diâmetros distintos do espaço do pino [Estreito (0,91-1,49mm), Médio (1,5-2,08mm), Grande (2,09mm-2,67mm)] e alocados aleatoriamente em quatro tratamentos restauradores: controle (CO) - sem pinos; e pinos de fibra de vidro (GF), carbono (CF) ou quartzo (QF). Os pinos foram cimentados com cimento resinoso de cura dual (Duo Link, Bisco, Schaumburg, Estados Unidos) e a porção coronária foi reconstruída com resina composta de cura dual (Bis-Core, Bisco, Schaumburg, Estados Unidos). Os valores de resistência à fratura (N) foram analisados ​​por ANOVA a dois fatores e teste de Bonferroni (α=0,05). Resultados: O pino de fibra de carbono (CF) apresentou comportamento mecânico semelhante aos demais pinos avaliados, independente do diâmetro. O grupo controle (sem pino) apresentou os maiores valores de resistência à fratura (1013,8 - 1127,2 N) em relação aos grupos com os diferentes pinos avaliados (236,1 - 615,1 N). Dentro do mesmo material, o diâmetro influenciou a resistência à fratura apenas do pino de fibra de quartzo, com os maiores valores para diâmetro grande. Conclusão: Um diâmetro maior só confere maior resistência à fratura para QF. Os pinos CF apresentam resistência semelhante a outros pinos, independente do diâmetro. Para diâmetro grande, o tipo de pino utilizado não difere na resistência à fratura.

Referências

Barreto, M. S., Moraes Rdo, A., Rosa, R. A., Moreira, C. H., Só, M. V., & Bier, C. A. (2012). Vertical root fractures and dentin defects: effects of root canal preparation, filling, and mechanical cycling. J Endod, 38(8), 1135-1139. https://doi.org/10.1016/j.joen.2012.05.002

Boschian Pest, L., Guidotti, S., Pietrabissa, R., & Gagliani, M. (2006). Stress distribution in a post-restored tooth using the three-dimensional finite element method. J Oral Rehabil, 33(9), 690-697. https://doi.org/10.1111/j.1365-2842.2006.01538.x

de Oliveira, J. A., Pereira, J. R., Lins do Valle, A., & Zogheib, L. V. (2008). Fracture resistance of endodontically treated teeth with different heights of crown ferrule restored with prefabricated carbon fiber post and composite resin core by intermittent loading. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 106(5), e52-57. https://doi.org/10.1016/j.tripleo.2008.06.015

Dikbas, I., Tanalp, J., Ozel, E., Koksal, T., & Ersoy, M. (2007). Evaluation of the effect of different ferrule designs on the fracture resistance of endodontically treated maxillary central incisors incorporating fiber posts, composite cores and crown restorations. J Contemp Dent Pract, 8(7), 62-69.

Dotto, L., Girotto, L. P. S., Correa Silva Sousa, Y. T., Pereira, G. K. R., Bacchi, A., & Sarkis-Onofre, R. (2022). Factors influencing the clinical performance of the restoration of endodontically treated teeth: An assessment of systematic reviews of clinical studies. J Prosthet Dent. https://doi.org/10.1016/j.prosdent.2022.03.030

Ferrari, M., Vichi, A., & Grandini, S. (2001). Efficacy of different adhesive techniques on bonding to root canal walls: an SEM investigation. Dent Mater, 17(5), 422-429. https://doi.org/10.1016/s0109-5641(00)00102-0

Figueiredo, F. E., Martins-Filho, P. R., & Faria, E. S. A. L. (2015). Do metal post-retained restorations result in more root fractures than fiber post-retained restorations? A systematic review and meta-analysis. J Endod, 41(3), 309-316. https://doi.org/10.1016/j.joen.2014.10.006

Galhano, G. A., Valandro, L. F., de Melo, R. M., Scotti, R., & Bottino, M. A. (2005). Evaluation of the flexural strength of carbon fiber-, quartz fiber-, and glass fiber-based posts. J Endod, 31(3), 209-211. https://doi.org/10.1097/01.don.0000137652.49748.0c

Kremeier, K., Fasen, L., Klaiber, B., & Hofmann, N. (2008). Influence of endodontic post type (glass fiber, quartz fiber or gold) and luting material on push-out bond strength to dentin in vitro. Dent Mater, 24(5), 660-666. https://doi.org/10.1016/j.dental.2007.06.029

Marchi, G. M., Mitsui, F. H., & Cavalcanti, A. N. (2008). Effect of remaining dentine structure and thermal-mechanical aging on the fracture resistance of bovine roots with different post and core systems. Int Endod J, 41(11), 969-976. https://doi.org/10.1111/j.1365-2591.2008.01459.x

Martins, M. D., Junqueira, R. B., de Carvalho, R. F., Lacerda, M., Faé, D. S., & Lemos, C. A. A. (2021). Is a fiber post better than a metal post for the restoration of endodontically treated teeth? A systematic review and meta-analysis. J Dent, 112, 103750. https://doi.org/10.1016/j.jdent.2021.103750

Meng, Q., Ma, Q., Wang, T., & Chen, Y. (2018). An in vitro study evaluating the effect of ferrule design on the fracture resistance of endodontically treated mandibular premolars after simulated crown lengthening or forced eruption methods. BMC Oral Health, 18(1), 83. https://doi.org/10.1186/s12903-018-0549-8

Munari, L. S., Bowles, W. R., & Fok, A. S. L. (2019). Relationship between Canal Enlargement and Fracture Load of Root Dentin Sections. Dent Mater, 35(5), 818-824. https://doi.org/10.1016/j.dental.2019.02.015

Palepwad, A. B., & Kulkarni, R. S. (2020). In vitro fracture resistance of zirconia, glass-fiber, and cast metal posts with different lengths. J Indian Prosthodont Soc, 20(2), 202-207. https://doi.org/10.4103/jips.jips_321_19

Parisi, C., Valandro, L. F., Ciocca, L., Gatto, M. R., & Baldissara, P. (2015). Clinical outcomes and success rates of quartz fiber post restorations: A retrospective study. J Prosthet Dent, 114(3), 367-372. https://doi.org/10.1016/j.prosdent.2015.03.011

Rodríguez-Cervantes, P. J., Sancho-Bru, J. L., Barjau-Escribano, A., Forner-Navarro, L., Pérez-González, A., & Sánchez-Marín, F. T. (2007). Influence of prefabricated post dimensions on restored maxillary central incisors. J Oral Rehabil, 34(2), 141-152. https://doi.org/10.1111/j.1365-2842.2006.01720.x

Santini, M. F., Rippe, M. P., Franciscatto, G. J., da Rosa, R. A., Valandro, L. F., Só, M. V., & Bier, C. A. (2014). Canal preparation and filling techniques do not influence the fracture resistance of extensively damaged teeth. Braz Dent J, 25(2), 129-135. https://doi.org/10.1590/0103-6440201302392

Santos-Filho, P. C., Veríssimo, C., Soares, P. V., Saltarelo, R. C., Soares, C. J., & Marcondes Martins, L. R. (2014). Influence of ferrule, post system, and length on biomechanical behavior of endodontically treated anterior teeth. J Endod, 40(1), 119-123. https://doi.org/10.1016/j.joen.2013.09.034

Schestatsky, R., Dartora, G., Felberg, R., Spazzin, A. O., Sarkis-Onofre, R., Bacchi, A., & Pereira, G. K. R. (2019). Do endodontic retreatment techniques influence the fracture strength of endodontically treated teeth? A systematic review and meta-analysis. J Mech Behav Biomed Mater, 90, 306-312. https://doi.org/10.1016/j.jmbbm.2018.10.030

Shu, X., Mai, Q. Q., Blatz, M., Price, R., Wang, X. D., & Zhao, K. (2018). Direct and Indirect Restorations for Endodontically Treated Teeth: A Systematic Review and Meta-analysis, IAAD 2017 Consensus Conference Paper. J Adhes Dent, 20(3), 183-194. https://doi.org/10.3290/j.jad.a40762

Signore, A., Benedicenti, S., Kaitsas, V., Barone, M., Angiero, F., & Ravera, G. (2009). Long-term survival of endodontically treated, maxillary anterior teeth restored with either tapered or parallel-sided glass-fiber posts and full-ceramic crown coverage. J Dent, 37(2), 115-121. https://doi.org/10.1016/j.jdent.2008.10.007

Sorrentino, R., Di Mauro, M. I., Ferrari, M., Leone, R., & Zarone, F. (2016). Complications of endodontically treated teeth restored with fiber posts and single crowns or fixed dental prostheses-a systematic review. Clin Oral Investig, 20(7), 1449-1457. https://doi.org/10.1007/s00784-016-1919-8

Tsintsadze, N., Margvelashvili-Malament, M., Natto, Z. S., & Ferrari, M. (2022). Comparing survival rates of endodontically treated teeth restored either with glass-fiber-reinforced or metal posts: A systematic review and meta-analyses. J Prosthet Dent. https://doi.org/10.1016/j.prosdent.2022.01.003

Vadavadagi, S. V., Dhananjaya, K. M., Yadahalli, R. P., Lahari, M., Shetty, S. R., & Bhavana, B. L. (2017). Comparison of Different Post Systems for Fracture Resistance: An in vitro Study. J Contemp Dent Pract, 18(3), 205-208.

Wandscher, V. F., Bergoli, C. D., de Oliveira, A. F., Kaizer, O. B., Souto Borges, A. L., Limberguer Ida, F., & Valandro, L. F. (2015). Fatigue surviving, fracture resistance, shear stress and finite element analysis of glass fiber posts with different diameters. J Mech Behav Biomed Mater, 43, 69-77. https://doi.org/10.1016/j.jmbbm.2014.11.016

Downloads

Publicado

04/06/2022

Como Citar

MATOS, L. M. R. de; SILVA, M. L. .; CORDEIRO, T. O. .; LIMA, D. M. .; SOUZA, E. M. .; SILVA, A. M. .; SERAIDARIAN, P. I. Resistência à fratura de dentes tratados endodonticamente e restaurados com diferentes pinos de fibra em diâmetros distintos. Research, Society and Development, [S. l.], v. 11, n. 7, p. e56111730169, 2022. DOI: 10.33448/rsd-v11i7.30169. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30169. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências da Saúde