Can propolis and their compounds be efficacy in the treatment of coronavirus disease 2019 (COVID-19)? A systematic review
DOI:
https://doi.org/10.33448/rsd-v11i8.30302Keywords:
SARS-CoV-2; Rutin; Quercetin; CAPE; Systematic Review; Health teaching.Abstract
Despite the advancement of vaccination and the reduction in the number of deaths, there is still the emergence of new variants, such as the omicron of SARS-CoV-2 (COVID-19). In this sense, new natural antiviral therapies are highly explored. One of these products, propolis, have shown promising results against COVID-19, including the inhibition of the binding between the coronavirus and ACE2. This systematic review aimed to gather a summary of scientific evidence existing on the effective of the therapeutic use of propolis and their components in the treatment of COVID-19. The protocol for the present systematic review was registered on the PROSPERO (CRD42021267016). In this study, we analyzed 185 articles, selecting 13 of them. Some phenolic compounds and flavonoids, such as artepillin C, hesperetin, CAPE and rutin, were widely cited, as they have great potential for binding with the molecular targets of SARS-CoV-2. Some clinical studies that evaluated the effects of propolis against COVID-19 were included, and confirmed the effectiveness of propolis and its components. The results of this review demonstrate the effectiveness of using propolis and their components in the treatment of COVID-19 due to its antiviral activities. Additionally, the anti-inflammatory and immunomodulatory properties can help to patients with COVID-19.
References
Ali, A. M., & Kunugi, H. (2020). Apitherapy for Age-Related Skeletal Muscle Dysfunction (Sarcopenia): A Review on the Effects of Royal Jelly, Propolis, and Bee Pollen. Foods, 9(10), 1362. https://doi.org/10.3390/foods9101362
Ali, A. M., & Kunugi, H. (2021). Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies. Molecules, 26(5), 1232. https://doi.org/10.3390/molecules26051232
Aliboni, A., D’Andrea, A., & Massanisso, P. (2011). Treatment of propolis specimens from Central Italy to yield a product with a lower charge of allergenic species. Separation and Purification Technology, 82, 71–75. https://doi.org/10.1016/j.seppur.2011.08.022
Arentz, S., Hunter, J., Khamba, B., Mravunac, M., Lee, Z., Alexander, K., Lauche, R., Goldenberg, J., & Myers, S. P. (2021). Honeybee products for the treatment and recovery from viral respiratory infections including SARS-COV-2: A rapid systematic review. Integrative Medicine Research, 10, 100779.
Arora, S., Lohiya, G., Moharir, K., Shah, S., & Yende, S. (2020). Identification of Potential Flavonoid Inhibitors of the SARS-CoV-2 Main Protease 6YNQ: A Molecular Docking Study. Digital Chinese Medicine, 3(4), 239–248. https://doi.org/10.1016/j.dcmed.2020.12.003
Babaei, S., Rahimi, S., Karimi Torshizi, M. A., Tahmasebi, G., & Khaleghi Miran, S. N. (2016). Effects of propolis, royal jelly, honey and bee pollen on growth performance and immune system of Japanese quails. Veterinary Research Forum : An International Quarterly Journal, 7(1), 13–20.
Bachevski, D., Damevska, K., Simeonovski, V., & Dimova, M. (2020). Back to the basics: Propolis and COVID ‐19. Dermatologic Therapy, 33(4), e13780. https://doi.org/10.1111/dth.13780
Bachiega, T. F., Orsatti, C. L., Pagliarone, A. C., & Sforcin, J. M. (2012). The Effects of Propolis and its Isolated Compounds on Cytokine Production by Murine Macrophages. Phytotherapy Research, 26(9), 1308–1313. https://doi.org/10.1002/ptr.3731
Berretta, A. A., Silveira, M. A. D., Cóndor Capcha, J. M., & De Jong, D. (2020). Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease. Biomedicine & Pharmacotherapy, 131, 110622. https://doi.org/10.1016/j.biopha.2020.110622
Búfalo, M. C., Bordon-Graciani, A. P., Conti, B. J., de Assis Golim, M., & Sforcin, J. M. (2014). The immunomodulatory effect of propolis on receptors expression, cytokine production and fungicidal activity of human monocytes. Journal of Pharmacy and Pharmacology, 66(10), 1497–1504.
Cardoso, E. de O., Conti, B. J., Santiago, K. B., Conte, F. L., Oliveira, L. P. G., Hernandes, R. T., Golim, M. de A., & Sforcin, J. M. (2016). Phenolic compounds alone or in combination may be involved in propolis effects on human monocytes. Journal of Pharmacy and Pharmacology, 69(1), 99–108.
Clementi, N., Scagnolari, C., D’Amore, A., Palombi, F., Criscuolo, E., Frasca, F., Pierangeli, A., Mancini, N., Antonelli, G., Clementi, M., Carpaneto, A., & Filippini, A. (2021). Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. Pharmacological Research, 163, 105255.
Conti, B. J., Santiago, K. B., Cardoso, E. O., Freire, P. P., Carvalho, R. F., Golim, M. A., & Sforcin, J. M. (2016). Propolis modulates miRNAs involved in TLR-4 pathway, NF-κB activation, cytokine production and in the bactericidal activity of human dendritic cells. Journal of Pharmacy and Pharmacology, 68(12), 1604–1612. https://doi.org/10.1111/jphp.12628
Da, J., Xu, M., Wang, Y., Li, W., Lu, M., & Wang, Z. (2019). Kaempferol Promotes Apoptosis While Inhibiting Cell Proliferation via Androgen-Dependent Pathway and Suppressing Vasculogenic Mimicry and Invasion in Prostate Cancer. Analytical Cellular Pathology, 2019, 1–10.
da Silva, F. M. A., da Silva, K. P. A., de Oliveira, L. P. M., Costa, E. V., Koolen, H. H. F., Pinheiro, M. L. B., de Souza, A. Q. L., & de Souza, A. D. L. (2020). Flavonoid glycosides and their putative human metabolites as potential inhibitors of the sars-cov-2 main protease (Mpro) and rna-dependent rna polymerase (rdrp). Memorias Do Instituto Oswaldo Cruz, 115(9), 1–8. https://doi.org/10.1590/0074-02760200207
Dewi, L. K., Sahlan, M., Pratami, D. K., Agus, A., Agussalim, & Sabir, A. (2021). Identifying propolis compounds potential to be covid-19 therapies by targeting sars-cov-2 main protease. International Journal of Applied Pharmaceutics, 13(special issue 2), 103–110. https://doi.org/10.22159/ijap.2021.v13s2.20
Ding, Y., He, L., Zhang, Q., Huang, Z., Che, X., Hou, J., Wang, H., Shen, H., Qiu, L., Li, Z., Geng, J., Cai, J., Han, H., Li, X., Kang, W., Weng, D., Liang, P., & Jiang, S. (2004). Organ distribution of severe acute respiratory syndrome(SARS) associated coronavirus(SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. The Journal of Pathology, 203(2), 622–630. https://doi.org/10.1002/path.1560
Drożdżal, S., Rosik, J., Lechowicz, K., Machaj, F., Szostak, B., Przybyciński, J., Lorzadeh, S., Kotfis, K., Ghavami, S., & Łos, M. J. (2021). An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resistance Updates, 59, 100794. https://doi.org/10.1016/j.drup.2021.100794
Elwakil, B. H., Shaaban, M. M., Bekhit, A. A., El-Naggar, M. Y., & Olama, Z. A. (2021). Potential anti-COVID-19 activity of Egyptian propolis using computational modeling. Future Virology, 16(2), 107–116. https://doi.org/10.2217/fvl-2020-0329
Fikri, A. M., Sulaeman, A., Handharyani, E., Marliyati, S. A., & Fahrudin, M. (2019). The effect of propolis administration on fetal development. Heliyon, 5(10), e02672. https://doi.org/10.1016/j.heliyon.2019.e02672
Fiorini, A. C., Scorza, C. A., de Almeida, A. C. G., Fonseca, M. C. M., Finsterer, J., Fonseca, F. L. A., & Scorza, F. A. (2021). Antiviral activity of brazilian green propolis extract against sars-cov-2 (Severe acute respiratory syndrome-coronavirus 2) infection: Case report and review. Clinics, 76, 1–4.
Francuzik, W., Geier, J., Schubert, S., & Worm, M. (2019). A case‐control analysis of skin contact allergy in children and adolescents. Pediatric Allergy and Immunology, 30(6), 632–637. https://doi.org/10.1111/pai.13069
Fukuda, T., Fukui, M., Tanaka, M., Senmaru, T., Iwase, H., Yamazaki, M., Aoi, W., Inui, T., Nakamura, N., & Marunaka, Y. (2015). Effect of Brazilian green propolis in patients with type 2 diabetes: A double-blind randomized placebo-controlled study. Biomedical Reports, 3(3), 355–360.
Governa, P., Cusi, M. G., Borgonetti, V., Sforcin, J. M., Terrosi, C., Baini, G., Miraldi, E., & Biagi, M. (2019). Beyond the Biological Effect of a Chemically Characterized Poplar Propolis: Antibacterial and Antiviral Activity and Comparison with Flurbiprofen in Cytokines Release by LPS-Stimulated Human Mononuclear Cells. Biomedicines, 7(4), 73. https://doi.org/10.3390/biomedicines7040073
Guler, H. I., Ay Sal, F., Can, Z., Kara, Y., Yildiz, O., Belduz, A. O., Canakci, S., & Kolayli, S. (2021). Targeting CoV-2 Spike RBD and ACE-2 Interaction with Flavonoids of Anatolian Propolis by in silico and in vitro Studies in terms of possible COVID-19 therapeutics. BioRxiv, 2021.02.22.432207. http://biorxiv.org/content/early/2021/02/23/2021.02.22.432207.abstract
Güler, H. I., Tatar, G., Yildiz, O., Belduz, A. O., & Kolayli, S. (2020). Investigation of potential inhibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by Molecular Docking Study. ScienceOpen Preprints, 1–16. https://doi.org/10.14293/S2199-1006.1.SOR-.PP5BWN4.v1
Harisna, A. H., Nurdiansyah, R., Syaifie, P. H., Nugroho, D. W., Saputro, K. E., Firdayani, Prakoso, C. D., Rochman, N. T., Maulana, N. N., Noviyanto, A., & Mardliyati, E. (2021). In silico investigation of potential inhibitors to main protease and spike protein of SARS-CoV-2 in propolis. Biochemistry and Biophysics Reports, 26, 100969. https://doi.org/10.1016/j.bbrep.2021.100969
Hashem, H. E. (2020). IN Silico Approach of Some Selected Honey Constituents as SARS-CoV-2 Main Protease (COVID-19) Inhibitors. Eurasian Journal of Medicine and Oncology, 196–200. https://doi.org/10.14744/ejmo.2020.36102
Higgins, J., & Green, S. (2015). Cochrane Handbook for Systematic Reviews of Interventions version 5.3.0. Chichester (J. P. T. Higgins & S. Green (eds.); 5.1.0). www.handbook.cochrane.org
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
Jadad, A. R., Moore, R. A., Carroll, D., Jenkinson, C., Reynolds, D. J., Gavaghan, D. J., & McQuay, H. J. (1996). Assessing the quality of reports of randomized clinical trials: is blinding necessary? Controlled Clinical Trials, 17(1), 1–12. http://www.ncbi.nlm.nih.gov/pubmed/8721797
Jain, A. S., Sushma, P., Dharmashekar, C., Beelagi, M. S., Prasad, S. K., Shivamallu, C., Prasad, A., Syed, A., Marraiki, N., & Prasad, K. S. (2021). In silico evaluation of flavonoids as effective antiviral agents on the spike glycoprotein of SARS-CoV-2. Saudi Journal of Biological Sciences, 28(1), 1040–1051.
Kao, H. F., Chang-Chien, P. W., Chang, W. T., Yeh, T. M., & Wang, J. Y. (2013). Propolis inhibits TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells via PPARγ activation. International Immunopharmacology, 15(3), 565–574. https://doi.org/10.1016/j.intimp.2012.12.018
Khayrani, A. C., Irdiani, R., Aditama, R., Pratami, D. K., Lischer, K., Ansari, M. J., Chinnathambi, A., Alharbi, S. A., Almoallim, H. S., & Sahlan, M. (2021). Evaluating the potency of Sulawesi propolis compounds as ACE-2 inhibitors through molecular docking for COVID-19 drug discovery preliminary study. Journal of King Saud University - Science, 33(2), 101297. https://doi.org/10.1016/j.jksus.2020.101297
Koo, H. J., Lee, K. R., Kim, H. S., & Lee, B.-M. (2019). Detoxification effects of aloe polysaccharide and propolis on the urinary excretion of metabolites in smokers. Food and Chemical Toxicology, 130, 99–108. https://doi.org/10.1016/j.fct.2019.05.029
Kosari, M., Noureddini, M., Khamechi, S. P., Najafi, A., Ghaderi, A., Sehat, M., & Banafshe, H. R. (2021). The effect of propolis plus Hyoscyamus niger L. methanolic extract on clinical symptoms in patients with acute respiratory syndrome suspected to COVID ‐19: A clinical trial. Phytotherapy Research, ptr.7116. https://doi.org/10.1002/ptr.7116
Kumar, V., Dhanjal, J. K., Bhargava, P., Kaul, A., Wang, J., Zhang, H., Kaul, S. C., Wadhwa, R., & Sundar, D. (2020). Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1775704
Kumar, V., Dhanjal, J. K., Kaul, S. C., Wadhwa, R., & Sundar, D. (2020). Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity. Journal of Biomolecular Structure and Dynamics, 1–13.
Kumari, S., Nayak, G., Lukose, S. T., Kalthur, S. G., Bhat, N., Hegde, A. R., Mutalik, S., Kalthur, G., & Adiga, S. K. (2017). Indian propolis ameliorates the mitomycin C-induced testicular toxicity by reducing DNA damage and elevating the antioxidant activity. Biomedicine & Pharmacotherapy, 95, 252–263.
Kwon, M. J., Shin, H. M., Perumalsamy, H., Wang, X., & Ahn, Y.-J. (2020). Antiviral effects and possible mechanisms of action of constituents from Brazilian propolis and related compounds. Journal of Apicultural Research, 59(4), 413–425. https://doi.org/10.1080/00218839.2019.1695715
Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159. https://doi.org/10.2307/2529310
Lima, W. G., Brito, J. C. M., & Cruz Nizer, W. S. (2021). Bee products as a source of promising therapeutic and chemoprophylaxis strategies against COVID‐19 (SARS‐CoV. Phytotherapy Research, 35(2), 743–750. https://doi.org/10.1002/ptr.6872
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64(SUPPL.), 4–17. https://doi.org/10.1016/j.addr.2012.09.019
Maaroufi, H. (2020). LxxIxE-like Motif in Spike Protein of SARS-CoV-2 that is Known to Recruit the Host PP2A-B56 Phosphatase Mimics Artepillin C, an Immunomodulator, of Brazilian Green Propolis. BioRxiv, 1–16. https://doi.org/10.1101/2020.04.01.020941
Maia, E. H. B., Assis, L. C., de Oliveira, T. A., da Silva, A. M., & Taranto, A. G. (2020). Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Frontiers in Chemistry, 8, article 343. https://doi.org/10.3389/fchem.2020.00343
Marcucci, M. C., Ferreres, F., Garcı́a-Viguera, C., Bankova, V. S., De Castro, S. L., Dantas, A. P., Valente, P. H. M., & Paulino, N. (2001). Phenolic compounds from Brazilian propolis with pharmacological activities. Journal of Ethnopharmacology, 74(2), 105–112. https://doi.org/10.1016/S0378-8741(00)00326-3
Maruta, H., & He, H. (2020). PAK1-blockers: Potential Therapeutics against COVID-19. Medicine in Drug Discovery, 6, 100039.
Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2012). Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer Aided-Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
Messerli, S. M., Ahn, M.-R., Kunimasa, K., Yanagihara, M., Tatefuji, T., Hashimoto, K., Mautner, V., Uto, Y., Hori, H., Kumazawa, S., Kaji, K., Ohta, T., & Maruta, H. (2009). Artepillin C (ARC) in Brazilian green propolis selectively blocks oncogenic PAK1 signaling and suppresses the growth of NF tumors in mice. Phytotherapy Research, 23(3), 423–427. https://doi.org/10.1002/ptr.2658
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., & Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1. https://doi.org/10.1186/2046-4053-4-1
Okamoto, Y., Tanaka, M., Fukui, T., & Masuzawa, T. (2012). Brazilian propolis inhibits the differentiation of Th17 cells by inhibition of interleukin-6-induced phosphorylation of signal transducer and activator of transcription 3. Immunopharmacology and Immunotoxicology, 34(5), 803–809.
Orsatti, C. L., Missima, F., Pagliarone, A. C., Bachiega, T. F., Búfalo, M. C., Araújo, J. P., & Sforcin, J. M. (2010). Propolis immunomodulatory action in vivo on Toll-like receptors 2 and 4 expression and on pro-inflammatory cytokines production in mice. Phytotherapy Research, 24(8), 1141–1146.
Oryan, A., Alemzadeh, E., & Moshiri, A. (2018). Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomedicine & Pharmacotherapy, 98, 469–483. https://doi.org/10.1016/j.biopha.2017.12.069
Osés, S. M., Marcos, P., Azofra, P., de Pablo, A., Fernández-Muíño, M. Á., & Sancho, M. T. (2020). Phenolic Profile, Antioxidant Capacities and Enzymatic Inhibitory Activities of Propolis from Different Geographical Areas: Needs for Analytical Harmonization. Antioxidants, 9(1), 75.
Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5(1), 210.
Park, Y. K., Paredes-Guzman, J. F., Aguiar, C. L., Alencar, S. M., & Fujiwara, F. Y. (2004). Chemical Constituents in Baccharis dracunculifolia as the Main Botanical Origin of Southeastern Brazilian Propolis. Journal of Agricultural and Food Chemistry, 52(5), 1100–1103. https://doi.org/10.1021/jf021060m
Pereira, R. F., & Bártolo, P. J. (2016). Traditional Therapies for Skin Wound Healing. Advances in Wound Care, 5(5), 208–229.
Perola, E., Walters, W. P., & Charifson, P. S. (2004). A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins: Structure, Function, and Bioinformatics, 56(2), 235–249. https://doi.org/10.1002/prot.20088
Piñeros, A. R., de Lima, M. H. F., Rodrigues, T., Gembre, A. F., Bertolini, T. B., Fonseca, M. D., Berretta, A. A., Ramalho, L. N. Z., Cunha, F. Q., Hori, J. I., & Bonato, V. L. D. (2020). Green propolis increases myeloid suppressor cells and CD4+Foxp3+ cells and reduces Th2 inflammation in the lungs after allergen exposure. Journal of Ethnopharmacology, 252, 112496. https://doi.org/10.1016/j.jep.2019.112496
Pitsillou, E., Liang, J., Ververis, K., Hung, A., & Karagiannis, T. C. (2021). Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. Journal of Molecular Graphics and Modelling, 104, 107851.
Pitsillou, E., Liang, J., Ververis, K., Lim, K. W., Hung, A., & Karagiannis, T. C. (2020). Identification of Small Molecule Inhibitors of the Deubiquitinating Activity of the SARS-CoV-2 Papain-Like Protease: in silico Molecular Docking Studies and in vitro Enzymatic Activity Assay. Frontiers in Chemistry, 8, article 623971. https://doi.org/10.3389/fchem.2020.623971
Polansky, H., & Lori, G. (2020). Coronavirus disease 2019 (COVID-19): first indication of efficacy of Gene-Eden-VIR/Novirin in SARS-CoV-2 infection. International Journal of Antimicrobial Agents, 55(6), 105971. https://doi.org/10.1016/j.ijantimicag.2020.105971
Refaat, H., Mady, F. M., Sarhan, H. A., Rateb, H. S., & Alaaeldin, E. (2021). Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19. International Journal of Pharmaceutics, 592, 120028. https://doi.org/10.1016/j.ijpharm.2020.120028
Ripari, N., Sartori, A. A., da Silva Honorio, M., Conte, F. L., Tasca, K. I., Santiago, K. B., & Sforcin, J. M. (2021). Propolis antiviral and immunomodulatory activity: a review and perspectives for COVID-19 treatment. Journal of Pharmacy and Pharmacology, 73(3), 281–299.
Rocha, B. A., Bueno, P. C. P., Vaz, M. M. D. O. L. L., Nascimento, A. P., Ferreira, N. U., Moreno, G. de P., Rodrigues, M. R., Costa-Machado, A. R. de M., Barizon, E. A., Campos, J. C. L., de Oliveira, P. F., Acésio, N. de O., Martins, S. D. P. L., Tavares, D. C., & Berretta, A. A. (2013). Evaluation of a propolis water extract using a reliable RP-HPLC methodology and in vitro and in vivo efficacy and safety characterisation. Evidence-Based Complementary and Alternative Medicine, 2013, 1–11. https://doi.org/10.1155/2013/670451
Sahlan, M., Irdiani, R., Flamandita, D., Aditama, R., Alfarraj, S., Ansari, M. J., Khayrani, A. C., Pratami, D. K., & Lischer, K. (2021). Molecular interaction analysis of Sulawesi propolis compounds with SARS-CoV-2 main protease as preliminary study for COVID-19 drug discovery. Journal of King Saud University - Science, 33(1), 101234. https://doi.org/10.1016/j.jksus.2020.101234
Sforcin, J. M. (2007). Propolis and the immune system: a review. Journal of Ethnopharmacology, 113(1), 1–14. https://doi.org/10.1016/j.jep.2007.05.012
Sforcin, J. M. (2016). Biological Properties and Therapeutic Applications of Propolis. Phytotherapy Research, 30(6), 894–905. https://doi.org/10.1002/ptr.5605
Shaldam, M. A., Yahya, G., Mohamed, N. H., Abdel-Daim, M. M., & Al Naggar, Y. (2021). In silico screening of potent bioactive compounds from honeybee products against COVID-19 target enzymes. Environmental Science and Pollution Research, 28(30), 40507–40514. https://doi.org/10.1007/s11356-021-14195-9
Shawan, M. M. A. K., Halder, S. K., & Hasan, M. A. (2021). Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: an in silico molecular modeling approach in battling the COVID-19 outbreak. Bulletin of the National Research Centre, 45(1), 27. https://doi.org/10.1186/s42269-020-00479-6
Shimizu, T., Hino, A., Tsutsumi, A., Park, Y. K., Watanabe, W., & Kurokawa, M. (2008). Anti-Influenza Virus Activity of Propolis in Vitro and its Efficacy against Influenza Infection in Mice. Antiviral Chemistry and Chemotherapy, 19(1), 7–13. https://doi.org/10.1177/095632020801900102
Shimizu, T., Takeshita, Y., Takamori, Y., Kai, H., Sawamura, R., Yoshida, H., Watanabe, W., Tsutsumi, A., Park, Y. K., Yasukawa, K., Matsuno, K., Shiraki, K., & Kurokawa, M. (2011). Efficacy of Brazilian Propolis against Herpes Simplex Virus Type 1 Infection in Mice and Their Modes of Antiherpetic Efficacies. Evidence-Based Complementary and Alternative Medicine, 2011(Article ID 976196), 1–9. https://doi.org/10.1155/2011/976196
Shivanika, C., Kumar, D., Venkataraghavan, R., Tiwari, P., Sumitha, A., & Devi, B. (2020). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics, 1–27.
Silveira, M. A. D., De Jong, D., Berretta, A. A., Galvão, E. B. dos S., Ribeiro, J. C., Cerqueira-Silva, T., Amorim, T. C., Conceição, L. F. M. R. da, Gomes, M. M. D., Teixeira, M. B., Souza, S. P. de, Santos, M. H. C. A. dos, San Martin, R. L. A., Silva, M. de O., Lírio, M., Moreno, L., Sampaio, J. C. M., Mendonça, R., Ultchak, S. S., … Passos, R. da H. (2021). Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial. Biomedicine & Pharmacotherapy, 138, 111526.
Silveira, M. A. D., Teles, F., Berretta, A. A., Sanches, T. R., Rodrigues, C. E., Seguro, A. C., & Andrade, L. (2019). Effects of Brazilian green propolis on proteinuria and renal function in patients with chronic kidney disease: a randomized, double-blind, placebo-controlled trial. BMC Nephrology, 20(1), 140.
Sobrinho, R. C. S., Meneses, I. R. de, Alves, B. C., Oliveira, C. F., Carvalho, P., Taranto, A. G., Mano-Sousa, B. J., & Duarte-Almeida, J. M. (2021a). Critical analysis of structure based-drug design of propolis and their components against coronavirus disease 2019 (COVID-19): a systematic review. PROSPERO. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021267016
Sobrinho, R. C. S., Meneses, I. R. de, Alves, B. C., Oliveira, C. F., Carvalho, P., Taranto, A. G., Mano-Sousa, B. J., & Duarte-Almeida, J. M. (2021b). Data for: Can Propolis and their compounds be efficacy in the treatment of 2 Coronavirus Disease 2019 (COVID-19)? Mendeley Data.
Takeshita, T., Watanabe, W., Toyama, S., Hayashi, Y., Honda, S., Sakamoto, S., Matsuoka, S., Yoshida, H., Takeda, S., Hidaka, M., Tsutsumi, S., Yasukawa, K., Park, Y. K., & Kurokawa, M. (2013). Effect of Brazilian Propolis on Exacerbation of Respiratory Syncytial Virus Infection in Mice Exposed to Tetrabromobisphenol A, a Brominated Flame Retardant. Evidence-Based Complementary and Alternative Medicine, 2013, 1–9. https://doi.org/10.1155/2013/698206
Vardhan, S., & Sahoo, S. K. (2020). Searching inhibitors for three important proteins of COVID-19 through molecular docking studies. ArXiv, 1–13. https://doi.org/http://refhub.elsevier.com/S0753-3322(20)30815-5/sbref0075
Vijayakumar, B. G., Ramesh, D., Joji, A., Jayachandra prakasan, J., & Kannan, T. (2020). In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. European Journal of Pharmacology, 886, 173448. https://doi.org/10.1016/j.ejphar.2020.173448
Wang, L., Li, S., Yao, Y., Yin, W., & Ye, T. (2021). The role of natural products in the prevention and treatment of pulmonary fibrosis: a review. Food & Function, 12(3), 990–1007. https://doi.org/10.1039/D0FO03001E
Xu, J. W., Ikeda, K., Kobayakawa, A., Ikami, T., Kayano, Y., Mitani, T., & Yamori, Y. (2005). Downregulation of Rac1 activation by caffeic acid in aortic smooth muscle cells. Life Sciences, 76(24), 2861–2872. https://doi.org/10.1016/j.lfs.2004.11.015
Yao, Y., Luo, Z., & Zhang, X. (2020). In silico evaluation of marine fish proteins as nutritional supplements for COVID-19 patients. Food & Function, 11(6), 5565–5572. https://doi.org/10.1039/D0FO00530D
Yosri, N., Abd El-Wahed, A. A., Ghonaim, R., Khattab, O. M., Sabry, A., Ibrahim, M. A. A., Moustafa, M. F., Guo, Z., Zou, X., Algethami, A. F. M., Masry, S. H. D., AlAjmi, M. F., Afifi, H. S., Khalifa, S. A. M., & El-Seedi, H. R. (2021). Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2. Foods, 10(8), 1776.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Rilcy Carla Silva Sobrinho; Ivani Rosa de Meneses; Bruna Cristina Alves; Christiane Fátima Oliveira; Paulo Carvalho; Alex Gutterres Taranto; Brayan Jonas Mano-Sousa; Joaquim Maurício Duarte-Almeida
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.