Peptidases used in dairy technology: Current knowledge and relevant applications




Exogenous enzyme; Dairy processing; Milk protein hydrolysates; Enzymatic hydrolysis; Proteolysis.


The dairy sector is one of the most important industrial segments in peptidase applications These enzymes can hydrolyze milk proteins into medium/short peptides and amino acids, as well as modulate their nutritional and functional properties, which comprise sensory changes (e.g., texture and flavor), digestibility and solubility improved, as well as the release of bioactive compounds. Therefore, they have been applied to develop different dairy products, such as cheese and a wide range of products deriving from caseins and whey proteins. However, it is important to understand the structure of milk proteins at the time to select the best peptidase to achieve the desired hydrolyzed products. In addition, peptidases have different specificities, such as catalytic sites and optimal pH, which must be taken into account before their application in the dairy matrix. The present review aims to address important aspects associated with peptidase features and their current biotechnological applications in the dairy industry.


Abada, E. A. (2019). Application of Microbial Enzymes in the Dairy Industry. In Kuddus, M (Ed.), Enzymes in Food Biotechnology - Production, Applications, and Future Prospects (pp.61-72). Academic Press, Elsevier Inc.

Afsharnezhad, M., Shirin, S., & Sariri, R. (2018). A novel milk-clotting cysteine protease from Ficus johannis: Purification and characterization. International Journal of Biological Macromolecules, 121, 173-182.

Agudelo, R. A., Gauthier, S. F., Pouliot, Y., Marin, H., & Savoie, L. (2004). Kinetics of peptide fraction release during in vitro digestion of casein. Journal of the Science of Food and Agriculture, 84 325–333.

Ahmed, I. A. M., Morishima, I., Babiker, E. E., & Mori, N. (2009). Characterisation of partially purified milk-clotting enzyme from Solanum dubium Fresen seeds. Food Chemistry, 116 395–400.

Ahmed, S. A., Wehaidy, H, R., Ibrahim, O, A., Abd El Ghani, S., & El-Hofi, M. A. (2016). Novel milk-clotting enzyme from Bacillus stearothermophilus as a coagulant in UF-white soft cheese. Biocatalysis and Agricultural Biotechnology, 7 241–249.

Alavi, F., & Momen, S. (2020). Aspartic proteases from thistle flowers: traditional coagulants used in the modern cheese industry. International Dairy Journal, 107 104709.

Ali, B., Khan, K. Y., Majeed, H., Jin, Y., Xu, D., Rao, Z., & Xu, X. (2022). Impact of Soy–Cow's mixed milk enzyme modified cheese on bread aroma. LWT-Food Science and Technology 154 112793.

Alizadeh, O., & Aliakbarlu, J. (2020). Effects of ultrasound and ohmic heating pretreatments on hydrolysis, antioxidant and antibacterial activities of whey protein concentrate and its fractions. LWT-Food Science and Technology, 131 109913.

Athira, S., Mann, B., Saini, P., Sharma, R., Kumar, R., & Singh, A. K. (2014). Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey. Journal of the Science of Food and Agriculture, 95 2908–2915.

Azarnia, S., Lee, B., St-Gelais, D., Kilcawley, K., & Noroozi, E. (2011). Effect of free and encapsulated recombinant aminopeptidase on proteolytic indices and sensory characteristics of Cheddar cheese. LWT - Food Science and Technology, 44 570–575.

Bamdad, F,. Shin, S. H., Suh, J-W., Nimalaratne, C., & Sunwoo, H. (2017). Anti-Inflammatory and Antioxidant Properties of Casein Hydrolysate Produced Using High Hydrostatic Pressure Combined with Proteolytic Enzymes. Molecules, 22 609.

Banach, J. C., Lin, Z., & Lamsal, B. P. (2013). Enzymatic modification of milk protein concentrate and characterization of resulting functional properties. LWT-Food Science and Technology, 54 397-403.

Barba, F. J., Terefe, N. S., Buckow, R., Knorr, D., & Orlien, V. (2015). New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods. A review. Food Research International, 77 725–742.

Barrett, A. J., & McDonald, J. K. (1986). Nomenclature: protease, proteinase and peptidase. Biochemical Journal, 237 935–935.

Barrett, A. J. (1999). Peptidases: a view of classification and nomenclature. In: Turk V. (eds) Proteases New Perspectives. MCBU Molecular and Cell Biology Updates.

Barrett, A. J. (2000). Proteases. Current Protocols in Protein Science, 21(1). doi:10.1002/0471140864.ps2101s21

Bas, D., Kendirci, P., Salum, P., Govce, G., & Erbay, Z. (2019). Production of enzyme-modified cheese (EMC) with ripened white cheese flavour: I-effects of proteolytic enzymes and determination of their appropriate combination. Food and Bioproducts Processing, 117 287-301.

Biocatalysts. (2015). available at accessed on March 10, 2022

Blayo, C., Vidcoq, O., Lazennec, F., & Dumay, E. (2016). Effects of high pressure processing (hydrostatic high pressure and ultra-high pressure homogenisation) on whey protein native state and susceptibility to tryptic hydrolysis at atmospheric pressure. Food Research International, 79 40–53.

Carullo, D., Donsì, F., & Ferrari, G. (2020). Influence of high-pressure homogenization on structural properties and enzymatic hydrolysis of milk proteins. LWT-Food Science and Technology, 130 109657.

Cavalheiro, G. F., Parra Baptista, D., Domingues Galli, B., Negrão, F., Nogueira Eberlin, M., & Lúcia Gigante, M. (2020). High protein yogurt with addition of Lactobacillus helveticus: Peptide profile and angiotensin-converting enzyme ACE-inhibitory activity. Food Chemistry, 333, 127482. doi:10.1016/j.foodchem.2020.12748

Cavalcanti, M., Teixeira, M. F. S., Lima Filho, J. L., & Porto, A. L. F. (2004). Partial purification of new milk-clotting enzyme produced by Nocardiopsis sp. Bioresource Technology, 93 29–35.

Cagno, D. R., Pasquale, I., Angelis, M., & Gobbetti, M. (2012). Accelerated ripening of Caciocavallo Pugliese cheese with attenuated adjuncts of selected nonstarter lactobacilli. Journal of Dairy Science, 95 4784–4795.

Cavalli, V. S., Lufrano, D., Colombo, M. L., & Priolo, N. (2013). Properties and applications of phytepsins from thistle flowers. Phytochemistry, 92 16–32.

Clemente, A. (2000). Enzymatic protein hydrolysates in human nutrition. Trends in Food Science & Technology, 11 254–262.

Cui, Q., Sun, Y., Cheng, J., & Guo, M. (2022). Effect of two-step enzymatic hydrolysis on the antioxidant properties and proteomics of hydrolysates of milk protein concentrate. Food Chemistry, 366 130711.

De Castro, R. J. S., Bagagli, M. P., & Sato, H. H. (2015). Improving the functional properties of milk proteins: focus on the specificities of proteolytic enzymes. Current Opinion in Food Science, 1 64–69.

Dhillon, A., Sharma, K., Rajulapati, V., & Goyal, A. (2017). Proteolytic Enzymes. Current Developments in Biotechnology and Bioengineering, 149–173.

Dupas, C., Métoyer, B., Hatmi, H. E., Adt, I., Mahgoub, S. A., & Dumas, E. (2020). Plants: A natural solution to enhance raw milk cheese preservation. Food Research International, 130 108883.

Ehrmann, M., & Clausen, T. (2004). Proteolysis as a Regulatory Mechanism. Annual Review of Genetics, 38 709–724.

El Mecherfi, K. E., Saidi, D., Kheroua, O., Boudraa, G., Touhami, M., Rouaud, O., Curet, S., Choiset, Y., Rabesona, H., Chobert, J-M., & Haertlé, T. (2011). Combined microwave and enzymatic treatments for β-lactoglobulin and bovine whey proteins and their effect on the IgE immunoreactivity. European Food Research and Technology, 233 859–867.

El Mecherfi, K-E., Rouaud, O., Cure, S., Negaoui, H., Chobert, J-M., Kheroua, O., Saidi, D., & Haertlé, T. (2014). Peptic hydrolysis of bovine beta-lactoglobulin under microwave treatment reduces its allergenicity in anex vivomurine allergy model. International Journal of Food Science & Technology, 50 356–364.

Food and Agriculture Organization. (2021). Accessed on March 04, 2022

Fox, P. F., O’Connor, T., Mcsweeney, P., Guinee, T., O’brien, N. (1996). Cheese: Physical, biochemical, and nutritional aspects. Advances in Food and Nutrition Research, 39 163–328.

Gagaoua, M., Hoggas, N., & Hafid, K. (2015). Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes. International Journal of Biological Macromolecules, 73 245–252.

Gagaoua, M., Hafid, K., & Hoggas, N. (2017). Data in support of three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes. Data in Brief, 6 634–639.

Gagaoua, M., Ziane, F., Nait Rabah, S., Boucherba, N., El-Hadef El-Okki, A., Bouanane-Darenfed, A., & Hafid, K. (2017). Three phase partitioning, a scalable method for the purification and recovery of cucumisin, a milk-clotting enzyme, from the juice of Cucumis melo var . reticulatus. International Journal of Biological Macromolecules, 102 515–525.

Garcia, H. S., López-Hernandez, A., & Hill, C. G. (2017). Enzyme Technology – Dairy Industry Applications. Reference Module in Life Sciences.

Gomes, H. A. R., Moreira, L. R. S., & Filho, E. X. F. (2018) Enzymes and Food Industry: A Consolidated Marriage. Advances in Biotechnology for Food Industry, 55–89.

Güler, G., Vorob’ev, M. M., Vogel, V., & Mäntele, W. (2016). Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 161 8–18.

Guleria, S., Walia, A., Chauhan, A., & Shirkot, C. K. (2016). Optimization of milk-clotting enzyme production by Bacillus amyloliquefaciens SP1 isolated from apple rhizosphere. Bioresources and Bioprocessing, 3 30.

Guo, M. R., Fox, P. F., Flynn, A., & Kindstedt, P. S. (1995). Susceptibility of β-Lactoglobulin and Sodium Caseinate to Proteolysis by Pepsin and Trypsin. Journal of Dairy Science, 78 2336–2344.

Gurumallesh, P., Alagu, K., Ramakrishnan, B., & Muthusamy, S. (2019). A systematic reconsideration on proteases. International Journal of Biological Macromolecules, 1 128-254.

Gurung, N., Ray, S., Bose, S., & Rai, V. (2013). A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond. BioMed Research International, 13 1-18.

Gripon, J. C., Monnet, V., Lambert, G., & Desmazeaud, M. J. (1991). Microbial enzymes in cheese ripening Food enzymology . In P.F. Fox (Ed.), Elsevier Applied Science (pp.131-168).

Grozdanovic, M. M., Burazer, L., & Gavrovic-Jankulovic, M. (2013). Kiwifruit (Actinidia deliciosa) extract shows potential as a low-cost and efficient milk-clotting agent. International Dairy Journal, 32 46–52.

Hannon, J. A., Kilcawley, K. N., Wilkinson, M. G., Delahunty, C. M., & Beresford, T. P. (2006). Production of Ingredient-Type Cheddar Cheese with Accelerated Flavor Development by Addition of Enzyme-Modified Cheese Powder. Journal of Dairy Science, 89 3749–3762.

Hashem, A. M. (2000). Purification and properties of a milk-clotting enzyme produced by Penicillium oxalicum. Bioresource Technology, 75 219–222.

Horne, D. S., & Lucey, J. A. (2017). Rennet-Induced Coagulation of Milk. Cheese. In Paul L.H. McSweeney, Patrick F. Fox, Paul D. Cotter, David W. Everett (Eds.), Cheese (Fourth Edition) (pp.115–143). Academic Press.

Jacob, M., Jaros, D., & Rohm, H. (2011). Recent advances in milk clotting enzymes. International Journal of Dairy Technology, 64 14–33.

Karel, M. (1990). Encapsulation and controlled release of food components. In G. Schwartzberg, M.A. Rao (Eds.), Biotechnology and food process engineering (pp. 277-294). Marcel Dekker, New York .

Khattab, A. R., Guirguis, H. A., Tawfik, S. M., & Farag, M. A. (2019). Cheese ripening: A review on modern technologies towards flavor enhancement, process acceleration and improved quality assessment. Trends in Food Science & Technology, 88 343-360. doi:10.1016/j.tifs.2019.03.009

Kelly, P. (2011). Milk Protein Products | Milk Protein Concentrate. In Fuquay JW, Fox PF and McSweeney PLH (Eds.), Encyclopedia of Dairy Sciences, Second Edition (pp. 848–854). Academic Press.

Kilcawley, K., Wilkinson, M., & Fox, P. (2000). A survey of the composition and proteolytic indices of commercial enzyme-modified Cheddar cheese. International Dairy Journal 10 181–190. https://doi:10.1016/s0958-6946(00)00029-7

Kilcawley, K. N., Wilkinson, M. G., & Fox, P. F. (2006). A novel two-stage process for the production of enzyme-modified cheese. Food Research International, 39 619–627.

Kilcawley, K. N., Nongonierma, A. B., Hannon, J. A., Doolan, I. A., & Wilkinson, M. G. (2012) Evaluation of commercial enzyme systems to accelerate Cheddar cheese ripening. International Dairy Journal, 26 50–57.

Kleekayai, T., & FitzGerald, J. R. (2022). Manufacture of Milk and Whey Products: Protein Hydrolysates and Peptides. In Paul L.H. McSweeney, John P. McNamara (Eds.), Encyclopedia of Dairy Sciences (Third Edition) (pp. 154-166). Academic Press.

Koirala, S., Prathumpai, W., & Anal, A. K. (2021). Effect of ultrasonication pretreatment followed by enzymatic hydrolysis of caprine milk proteins and on antioxidant and angiotensin converting enzyme (ACE) inhibitory activity of peptides thus produced. International Dairy Journal, 118 105026.

Korhonen, H., & Pihlanto, A. (2006.) Bioactive peptides: Production and functionality. International Dairy Journal, 16 945–960.

Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1 177–187.

Kumar, A., Grover, S., Sharma, J., & Batish, V. K. (2010). Chymosin and other milk coagulants: sources and biotechnological interventions. Critical Reviews in Biotechnology, 30 243–258.

Kumari, M., Sharma, A., Jagannadham, M. V. (2012). Religios in B, a milk-clotting serine protease from Ficus religiosa. Food Chemistry, 131 1295–1303.

Lemes, A. C., Pavó, Y., Lazzaroni, S., Rozycki, S., Brandelli, A., & Kalil, S. J. (2016). A new milk-clotting enzyme produced by Bacillus sp. P45 applied in cream cheese development. LWT - Food Science and Technology, 66 217–224.

Leclerc, P. L., Gauthier, S. F., Bachelard, H., Santure, M., & Roy, D. (2002). Antihypertensive activity of casein-enriched milk fermented by Lactobacillus helveticus. International Dairy Journal, 12 995–1004. doi:10.1016/s0958-6946(02)00125-5

Mazorra-Manzano, M. A., Perea-Gutiérrez, T. C., Lugo-Sánchez, M. E., Ramirez-Suarez. J, C., Torres-Llanez, M. J., González-Córdova, A. F., & Vallejo-Cordoba, B. (2013). Comparison of the milk-clotting properties of three plant extracts. Food Chemistry 141 1902–1907.

Mazorra-Manzano, M. A., Ramírez-Suarez, J. C., & Yada, R. Y. (2017). Plant proteases for bioactive peptides release: A review. Critical Reviews in Food Science and Nutrition, 1–17. doi:10.1080/10408398.2017.1308312

Mazorra-Manzano, M. A., Mora-Cortes, W. G., Leandro-Roldan, M. M., González-Velázquez, D. A., Torres-Llanez, M. J., Ramírez-Suarez, J. C., González-Córdova, F. A., & Vallejo-Córdoba, B. (2020). Production of whey protein hydrolysates with angiotensin-converting enzyme-inhibitory activity using three new sources of plant proteases. Biocatalysis and Agricultural Biotechnology, 28 101724.

Meng, F., Chen, R., Zhu, X., Lu, Y., Nie, T., Lu, F., & Lu, Z. (2018). Newly Effective Milk-Clotting Enzyme from Bacillus subtilis and Its Application in Cheese Making. Journal of Agricultural and Food Chemistry, 66 6162–6169.

Merheb-Dini, C., Garcia, G. A. C., Penna, A. L. B., Gomes, E., & Silva, R. (2012). Use of a new milk-clotting protease from Thermomucor indicae-seudaticae N31 as coagulant and changes during ripening of Prato cheese. Food Chemistry, 130 859–865.

McDonald, J. K. (1985). An overview of protease specificity and catalytic mechanisms: aspects related to nomenclature and classification. The Histochemical Journal, 17 773–785.

McSweeney, P. L. H., Sousa, M. J. (2000). Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. Lait, 80 293–324.

Mikhaylin, S., Boussetta, N., Vorobiev, E & Bazinet, L. (2017). High Voltage Electrical Treatments To Improve the Protein Susceptibility to Enzymatic Hydrolysis. ACS Sustainable Chemistry & Engineering, 5 11706–11714.

Mótyán, J., Tóth, F., Tőzsér, J. (2013). Research Applications of Proteolytic Enzymes in Molecular Biology. Biomolecules, 3 923–942.

Moskowitz, G. J., & Noelck, S. S. (1987). Enzyme-Modified Cheese Technology. Journal of Dairy Science, 70 1761–1769.

Nasri, R., Abdelhedi, O., Nasri, M., & Jridi, M. (2022). Fermented protein hydrolysates: biological activities and applications. Current Opinion in Food Science, 43 120-127.

Narwal, K. R., Bhushan, B., Pal, A., Panwar, A., & Malhotra, S. (2016). Purification, physico-chemico-kinetic characterization and thermal inactivation thermodynamics of milk clotting enzyme from Bacillus subtilis MTCC 10422. LWT - Food Science and Technology, 65 652–660.

Nielsen, D. S., Jakobsen, M. A. L, Geiker, R. W. N., & Bertram. C. H. (2022). Chemically acidified, live and heat-inactivated fermented dairy yoghurt show distinct bioactive peptides, free amino acids and small compounds profiles. Food Chemistry, 376 131919.

Nomenclature Committee of the International Union of Biochemistry Molecular Biology. (1992). Enzyme Nomenclature 1992. Academic Press, Orlando

Nongonierma, A. B., & FitzGerald, R. J. (2011). Enzymes Exogenous to Milk in Dairy Technology | Proteinases. In Roginki, H., Fuquay, J. W. and Fox, P. F. (Eds)., Encyclopedia of Dairy Sciences (pp.289–296). Academic Press.

Oldfield, H. D. & Singh. (2005). Singh Functional properties of milk powders. C. Onwulata (Ed.), Encapsulated and powdered foods (pp.365-386), Taylor & Francis.

Park. S. Y., Gibbs, B. F., Lee, B.H. (1995). Effects of crude enzyme of Lactobacilfus casei LLG on water-soluble peptides of enzyme-modified cheese. Food Resarch International, 28,43-49.

Research and Markets Proteases Report - Global Market Trajectory & Analytics. (2021).

Ryhänen, E-L., Pihlanto-Leppälä, A., & Pahkala, E. (2001). A new type of ripened, low-fat cheese with bioactive properties. International Dairy Journal, 11 441–447.

Sakr, M., & Liu, S. (2014). A comprehensive review on applications of ohmic heating (OH). Renewable and Sustainable Energy Reviews, 39 262–269.

Salum, P., Berktas, S., Cam, M., & Erbay, Z. (2022). Enzyme-modified cheese powder production: Influence of spray drying conditions on the physical properties, free fatty acid content and volatile compounds. International Dairy Journal, 125 105241.

Sanchez, S., & Demain, A. L. (2017). Useful Microbial Enzymes-An Introduction. In Goutam Brahmachari (Ed.)., Biotechnology of Microbial Enzymes (pp.1-11). Academic Press.

Sawant, R., & Nagendran, S. (2014). Protease: an enzyme with multiple Industrial applications. World journal of pharmacy and Pharmaceutical sciences , 3 568-579.

Shivanna, S. K., & Nataraj, B. H. (2020). Revisiting Therapeutic and Toxicological Fingerprints of Milk-Derived Bioactive Peptides: An Overview. Food Bioscience, 38 100771.

Shamtsyan, M., Dmitriyeva, T., Kolesnikov, B., & Denisova, N. (2014). Novel milk-clotting enzyme produced by Coprinus lagopides basidial mushroom. LWT - Food Science and Technology, 58 343–347.

Shieh, C. J., Phan Thi, L. A., & Shih, I. L. (2009). Milk-clotting enzymes produced by culture of Bacillus subtilis natto. Biochemical Engineering Journal, 43 85–91.

Singh, H., & Ye, A. (2014). Interactions and Functionality of Milk Proteins in Food Emulsions. Milk Proteins, 359–386.

Singh, R., Kumar, M., Mittal, A., Mehta, P.K. (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6 174.

Soda, E. M., & Awad, S. (2011). Cheese | Accelerated Cheese Ripening. In Paul L.H. McSweeney, John P. McNamara (Eds.), Encyclopedia of Dairy Sciences (pp.795–798). Academic Press.

Salehi, M., Aghamaali, M. R., Sajedi, R. H., Asghari, S. M., & Jorjani, E. (2017). Purification and characterization of a milk-clotting aspartic protease from Withania coagulans fruit. International Journal of Biological Macromolecules, 98 847–854.

Shah, M. A., Mir, S. A., & Paray, M.A. (2014). Plant proteases as milk-clotting enzymes in cheesemaking: a review. Dairy Science & Technology, 94 5–16.

Skrzypczak, K., Gustaw, W., Fornal, E., Kononiuk, A., Michalak-Majewska, M., Radzki, W., & Wa´sko, A. (2020). Functional and Technological Potential of Whey Protein Isolate in Production of Milk Beverages Fermented by New Strains of Lactobacillus helveticus. Applied Sciences, 10 7089.

Spök, A. (2006). Safety Regulations of Food Enzymes. Food Technology and Biotechnology, 44 197–209.

Tao, L. (2011). Contribution of exopeptidases to formation of nonprotein nitrogen during ensiling of alfalfa. Journal of Dairy Science, 94 3928–3935.

Tavano, O. L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90 1–11.

Tavano, O. L. (2015). Proteases as a Tool in Food Biotechnology. Advances in Food Biotechnology, 207–220.

Tavano, O. L., Berenguer-Murcia, A., Secundo, F., & Fernandez-Lafuente, R. (2018). Biotechnological Applications of Proteases in Food Technology. Comprehensive Reviews in Food Science and Food Safety, 17 412–436.

Uluko, H., Zhang, S., Liu, L., Li, H., Cui, W., Xue, H., Zhaoa, L., Sunc, Y., Lua, J., & Lv, J. (2014). Pilot-scale membrane fractionation of ACE inhibitory and antioxidative peptides from ultrasound pretreated milk protein concentrate hydrolysates. Journal of Functional Foods 7 350–361.

Uluko, H., Zhang, S., Liu, L., Tsakama, M., Lu, J., & Lv, J. (2015). Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates. Journal of Functional Foods, 18 1138–1146.

Vallejo, J. A., Ageitos, J. M., Poza, M., & Villa, T. G. (2012). Short communication: A comparative analysis of recombinant chymosins. Journal of Dairy Science, 95 609–613.

Visser, S. (1993) Proteolytic enzymes and their relation to cheese ripening and flavor: An overview. Journal of Dairy Science, 76 329-350.

Vranova, V., Rejsek, K., & Formanek, P. (2013). Proteolytic activity in soil: A review. Applied Soil Ecology 70 23–32.

Xia, Y., Yuan, R., Weng, S., Wang, G., Xiong, Z., Zhang, H., & Ai, L. (2020). Proteolysis, lipolysis, texture and sensory properties of cheese ripened by Monascus fumeus. Food Research International, 137 109657.

Zanutto-Elgui, M. R., Vieira, J. C. S., do Prado, D. Z., Buzalaf, M. A. R., de Magalhães Padilha, P., & Fleuri, L. F. (2019). Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chemistry, 278 823-831.

Zikiou, A., & Zidoune, M. N. (2018). Enzymatic extract from flowers of Algerian spontaneous Cynara cardunculus : Milk-clotting properties and use in the manufacture of a Camembert-type cheese. International Journal of Dairy Technology 71.

Yang, X., Zhang, Z., Zhang, W., Qiao, H., Wen, P., & Zhang, Y. (2022) Proteomic analysis, purification and characterization of a new milk-clotting protease from Tenebrio molitor larvae. Journal of Functional Foods, 89 104944.

Wehaidy, H. R., Abdel-Naby, M. A., Shousha, W. G., Elmallah, M. I. Y., & Shawky, M. M. (2018). Improving the catalytic, kinetic and thermodynamic properties of Bacillus subtilis KU710517 milk clotting enzyme via conjugation with polyethylene glycol. International Journal of Biological Macromolecules, 111 296–301.

Wehaidy, H. R., Abdel, Wahab, W. A, Kholif, A. M. M., Elaaser, M., Bahgaat, W. K., & Abdel-Naby M, A. (2020). Statistical optimization of B. subtilis MK775302 milk clotting enzyme production using agro-industrial residues, enzyme characterization and application in cheese manufacture. Biocatalysis and Agricultural Biotechnology, 25 101589.

Wilkinson, M. G., Doolan, I. A., & Kilcawley, K. N. (2011). Cheese | Enzyme-Modified Cheese. Encyclopedia of Dairy Sciences (pp.799–804). Academic Press.




How to Cite

PAIVA, V. N. .; MARTINS, E.; MACHADO, S. G. .; CARVALHO, A. F. de . Peptidases used in dairy technology: Current knowledge and relevant applications. Research, Society and Development, [S. l.], v. 11, n. 7, p. e57211730367, 2022. DOI: 10.33448/rsd-v11i7.30367. Disponível em: Acesso em: 7 jul. 2022.



Review Article