Antimicrobial action of silver nanoparticles (AgNps) stabilized in jurema preta (Mimosa tenuiflora (Willd., (Poir.) extract

Authors

DOI:

https://doi.org/10.33448/rsd-v11i8.30617

Keywords:

Nanoparticles; Plant extracts; Antimicrobial action.

Abstract

Microbial drug resistance has been a threat to the effective treatment of various infections caused by pathogenic agents. In this sense, the research aimed to evaluate the antimicrobial action of silver nanoparticles (AgNPs) synthesized by means of bioreduction using the extract of Mimosa tenuiflora. With this, the research adopted the laboratory methodology of a quantitative nature in which it used for the synthesis of nanoparticles, silver nitrate (AgNO3) as a precursor agent, sodium citrate as a reducing agent and M. tenuiflora extract as a stabilizing agent. The inoculum of the bacterial species to be tested was prepared by the method of direct suspension of CLSI (2009) colonies in sterile saline solution, from colonies grown for 24 hours in BHI (Brain Heart Infusion agar) and in Sabouraud medium for the fungal species. The susceptibility test was performed using the CLSI (2009) well diffusion method, with adaptations, and the analysis of the antimicrobial action of AgNPs was performed after 24 hours of incubation at a temperature of 37 ºC. The solution containing AgNps was applied to three species of microorganisms: Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922) and Candida albicans (ATCC 10231). The results show that 20 µL of the substance against the microbial strains showed slight antimicrobial activity against bacteria, but the same was not observed in the tested yeast. According to the results, it is observed that the AgNps stabilized in M. tenuiflora have antimicrobial activity, mainly against Staphylococcus aureus.

References

Aldayel, F. M., Alsobeg, M. S., & Khalifa, A. (2022). In vitro antibacterial activities of silver nanoparticles synthesised using the seed extracts of three varieties of Phoenix dactylifera. Brazilian Journal of Biology, 82, e242301.

Amariz, I. A. e, Pereira, E. C. V., Alencar Filho, J. M. T. de, Silva, J. P. da, Souza, N. A. C. de, de Oliveira, A. P., Rolim, L. A., et al. (2022). Chemical study of Mimosa tenuiflora barks. Natural Product Research, 36(7), 1893–1897.

Araujo, I. M., Lopes, L. P., & Cruz, C. M. (2020). Caracterização sistemática da resposta imune à infecção por Candida. Brazilian Journal of Health Review, 3(2), 3788–3803.

Bernardo-Mazariegos, E., Valdez-Salas, B., González-Mendoza, D., Abdelmoteleb, A., Tzintzun Camacho, O., Ceceña Duran, C., & Gutiérrez-Miceli, F. (2019). Silver nanoparticles from Justicia spicigera and their antimicrobial potentialities in the biocontrol of foodborne bacteria and phytopathogenic fungi. Revista Argentina de Microbiología, 51(2), 103–109.

Bruniera, J. F. B., Gabriel-Silva, L., Goulart, R. S., Silva-Sousa, Y. T. C., Lara, M. G., Pitondo-Silva, A., & Miranda, C. E. S. (2020). Green Synthesis, Characterization and Antimicrobial Evaluation of Silver Nanoparticles for an Intracanal Dressing. Brazilian Dental Journal, 31(5), 485–492.

Câmara, N. L. A. da S., Viana, D. dos S. F., & Viana, V. G. F. (2021). Síntese e caracterização de nanopartículas de prata estabilizada em extrato de Struthanthus Flexicaulis Mart. (Erva-de-Passarinho). Research, Society and Development, 10(14), e146101421983.

Cussolim, P. A., Junior, A. S., de Melo, A. L., & de Melo, A. (2021). Mecanismos de resistência do staphylococcus aureus a antibióticos mechanisms of resistance of staphylococcus aureus to antibiotics. Mecanismos de resistência do Staphylococcus aureus a antibióticos, 6(12), 13.

Durán, A. B., Nelson, Rolim, Wallace R. Durán, Marcela, Fávaro, Wagner J.,. Seabra. (2019). Nanotoxicologia de nanopartículas de prata: toxicidade em animais e humanos. Química Nova, 42, 206–213.

Freire, N. B., Pires, L. C. S. R., Oliveira, H. P., & Costa, M. M. (2018). Atividade antimicrobiana e antibiofilme de nanopartículas de prata sobre isolados de Aeromonas spp. Obtidos de organismos aquáticos. Pesquisa Veterinária Brasileira, 38(2), 244–249.

Freires, M. S., & Rodrigues Junior, O. M. (2022). Resistência bacteriana pelo uso indiscriminado da azitromicina frente a Covid-19: Uma revisão integrativa. Research, Society and Development, 11(1), e31611125035.

Furtado, D. M. F., Silveira, V. S. da, Carneiro, I. C. do R. S., Furtado, D. M. F., & Kilishek, M. P. (2019). Consumo de antimicrobianos e o impacto na resistência bacteriana em um hospital público do estado do Pará, Brasil, de 2012 a 2016. Revista Pan-Amazônica de Saúde, 10(0).

Gomes, D. M. D., Durán, N., Seabra, A. B., Silva, L. D. P., Prado, F. B., Silva, T. D. A., & Teixeira, M. F. S. (2020). Síntese verde de nanopartículas de prata intermediada por fungo anamórfico e eficácia antibacteriana e antifúngica. Boletim do Museu Paraense Emílio Goeldi—Ciências Naturais, 15(2), 433–443.

Guimarães, M. L., Amarante, J. F., & Oliveira, H. P. de. (2021). A importância dos óleos essenciais na síntese verde de nanopartículas metálicas. Matéria (Rio de Janeiro), 26(3), e13053.

Hiltunen, T., Virta, M., & Laine, A.-L. (2017). Antibiotic resistance in the wild: An eco-evolutionary perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1712), 20160039.

Loureiro, R. J., Roque, F., Teixeira Rodrigues, A., Herdeiro, M. T., & Ramalheira, E. (2016). O uso de antibióticos e as resistências bacterianas: Breves notas sobre a sua evolução. Revista Portuguesa de Saúde Pública, 34(1), 77–84.

Martelli, E. C., Camargo, M. C. G. D., Vieira, J., & Gandra, R. F. (2021). Uso de substâncias bioativas como conservantes naturais em formas farmacêuticas: Uma revisão / Use of bioactive substances as natural preservatives in pharmaceutical forms: a review. Brazilian Journal of Health Review, 4(2), 8120–8133.

Oliveira, J. W. A. de, & Paula, C. C. de. (2021). Bactérias gram-negativas multirresistentes: revisão sobre os desafios e demais discussões. Caderno de Publicações Univag, 0(11).

Santos, R. F., Santos, A. P. dos, Oliveira, L. B. de, & Ferreira, T. C. (2022). Propriedades antimicrobianas de extratos da casca de jurema-preta (mimosa tenuiflora (wild.) poir.) / Antimicrobial properties of jurema-preta (mimosa tenuiflora (wild.) poir.) pear extracts. Brazilian Journal of Development, 8(3), 16915–16930.

Silva, R. A. da, Oliveira, B. N. L. de, Silva, L. P. A. da, Oliveira, M. A., & Chaves, G. C. (2020). Resistência a Antimicrobianos: A formulação da resposta no âmbito da saúde global. Saúde em Debate, 44(126), 607–623.

Viana, A. V., Viana, D. dos S. F., Figueirêdo, G. S. de, Brito, J. E. de, Viana, V. G. F., & Viana Junior, V. G. F. (2021). Potencial antimicrobiano das nanopartículas de prata estabilizadas em curcumina e extrato de folhas de cajueiro (Anacardium occidentale L.). Research, Society and Development, 10(9), e47610918364.

Yousaf, H., Mehmood, A., Ahmad, K. S., & Raffi, M. (2020). Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Materials Science and Engineering: C, 112, 110901.

Zagui, G. S., Tonani, K. A. A., Fregonesi, B. M., Machado, G. P., Silva, T. V., Andrade, L. N., Andrade, D., et al. (2022). Tertiary hospital sewage as reservoir of bacteria expressing MDR phenotype in Brazil. Brazilian Journal of Biology, 82, e234471.

Published

11/06/2022

How to Cite

BRITO, J. E. de .; VIANA, D. dos S. F.; VIANA, V. G. F.; FIGUEIRÊDO, G. S. de . Antimicrobial action of silver nanoparticles (AgNps) stabilized in jurema preta (Mimosa tenuiflora (Willd., (Poir.) extract. Research, Society and Development, [S. l.], v. 11, n. 8, p. e10011830617, 2022. DOI: 10.33448/rsd-v11i8.30617. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30617. Acesso em: 26 dec. 2024.

Issue

Section

Health Sciences