Titanium anodizing in citric acid

Authors

DOI:

https://doi.org/10.33448/rsd-v11i8.30872

Keywords:

Titanium; Anodizing; Citric acid.

Abstract

The industrial process of anodizing titanium used in implantology and craniofacial orthopedics, currently uses hydrofluoric acid (HF) based electrolyte to obtain porous structures in titanium. HF is highly corrosive and its disposal is restricted to companies with special authorization to do so. Thus, the objective of this work is to anodize titanium samples using citric acid electrolyte and evaluate the behavior of anodized titanium samples under different conditions, determining the best process parameters. The electrolyte concentrations used were: 62%, 31% and 15%, and the anodizing times: 1, 5, 30 and 60 minutes. For that, analyzes of the anodizing transients of the samples and morphological analyzes were carried out by means of Scanning Electron Microscopy (SEM) and Wetability, semiquantitative chemical analyzes by means of Energy Dispersive Spectroscopy (EDS) and also electrochemical analysis of Electrodynamic Polarization. The Ti15-300 and Ti62-1800 samples showed significant porous formations. Through the results obtained, it is possible to affirm that there was chemical dissolution of the oxide to form the pores, due to the concentration of the electrolyte, since it has a small amount of oxygen compared to an aqueous solution. These results were confirmed through tests carried out on the samples after anodizing. Thus, it was concluded that citric acid is a promising alternative to replace the HF-based electrolyte to obtain porous structures, mainly using citric acid electrolyte at a concentration of 15%, with an anodizing time of 5 minutes.

References

Barranco, V., Escudero, M. L., & García-Alonso, M. C. (2011). Influence of the microstructure and topography on the barrier properties of oxide scales generated on blasted Ti6Al4V surfaces. Acta Biomaterialia, 7(6), 2716-2725.

Bauer, S., Park, J., Faltenbacher, J., Berger, S., Mark, K. D., & Schmuki, P. (2009). Size selective behavior of mesenchymal stem cells on ZrO2 and TiO2 nanotube arrays. Integrative Biology, 1(8-9), 525.

Bonatto, F. (2009). Síntese e Caracterização de Nanoestruturas Formadas pela Anodização de Titânio. Dissertação (Mestrado em Engenharia de Materiais) – Programa de Pós-graduação em Engenharia de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, 110 f.

Bränemark, P. L. (1969). Intra-osseous anchorage of dental prostheses. L. Experimentalstudies. Scandinavian Journal of Plastic and Reconstructive Surgery, 3(2), 81-100.

Cremasco, A., Andrade, P. N., Contieri, R. J., Lopes, E. S. N., Afonso, C. R. M., & Caram, R. (2011). Correlations between aging heat treatment, ω phase precipitation and mechanical properties of a cast Ti–Nb alloy. Materials & Design, 32(4), 2387-2390.

Dalmau, A., Pina, V. G., Devesa, F., Amigó, V., & Muñoz, I. (2013). Influence of fabrication process on eletrochemical and surface properties of Ti-6Al-4V alloy for medical applications. Electrochimica Acta, 95, 102-111.

Diamanti, M. V., Curto, B. del, & Pedeferri, M. (2008). Interference colors of thin oxide layers on titanium. Color Research & Application, 33(3), 221-228.

Dunn, D., & Raghavan, S. (1992). Formation and characterization of anodized layers on CP Ti and Ti-6Al-4V biomaterials. Surface and Coatings Technology, 50(3), 223-232.

Elias, C. N., Oshida, Y., Lima, J. H. C., Muller, C. A. (2008). Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. Journal of the Mechanical Behavior of Biomedical Materials, 1(3), 234-242.

Fuhr, L. T., Moura, A. B. D., Carone, C. L. P. et al. (2020). Colored anodizing of titanium with pyroligneous solutions of black wattle. Matéria-Rio de Janeiro, 25(2), 12658.

Indira, K., Mudali, U. K., Nishimura, T., & Rajendran, N. (2015). A Review on TiO2 Nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. Journal of Bio-and Tribo-Corrosion, 1(4), 127-134.

Kania, A., Nolbrzak, P., Radoń, A., Niemiec-Cyganek, A., & Babilas, R. (2020). Effect of the thickness of TiO2 films on the structure and corrosion behavior of Mg-based alloys. Materials, 13(5), 1065-1080.

Kunst, S. R., Graef, T., Mueller, L. T., Morisso, F. D. P., Carone, C. L. P., Fuhr, L. T., Oliveira, C. T., & Ferreira, J. Z. (2020). Superficial treatment by anodization in order to obtain titanium oxide nanotubes applicable in implantology. Matéria-Rio de Janeiro, 25, e12873.

Kunst, S. R., Cerveira, D. O., Ferreira, J. Z., Graef, T. F., Santana, J. A., Carone, C. L. P., Morisso, F. D. P., & Oliveira, C. T. (2021). Influence of simulated body fluid (normal and inflammatory) on corrosion resistance of anodized titanium. Research, society and development, 10, e122101018606.

Lima, G. G. de. (2012). Propriedades Mecânicas e de Bioatividade de Filmes Anódicos de Titânio, Contendo Íons de Ca e P, Submetidos a Tratamentos Térmicos e Hidrotérmicos. Dissertação (Mestrado em Engenharia Mecânica) – Programa de Pós-graduação em Engenharia Mecânica, Universidade Federal do Paraná, Curitiba, 92 f.

Mueller, L. T., Oliveira, K. V., Morisso, F. D. P., Kunst, S. R., Carone, C. L. P., & Oliveira, C. T. (2021). Influência da concentração de ácido acético presente no licor pirolenhoso na anodização de nióbio. Tecnologia em Metalurgia, Materiais e Mineração, 18, e2314.

Roberge, P. R. (1999). Handbook of corrosion engineering. McGraw-Hill Education, 1072 p.

Salvador, D. G., Marcolin, P., Beltrami, L. V. R., Brandalise, R. N., & Kunst, S. R. (2018). Development of alkoxide precursors-based hybrid coatings on Ti-6Al-4V alloy for biomedical applications: influence of pH of sol. Journal of materials engineering and performance, 27, 2863-2874.

Saurabh, A., Meghana, C. M., Singh, P. K., & Verma, P. C. (2022). Titanium-based materials: synthesis, properties, and applications. Materials Today: Proceedings, 56 (1), 412-419.

Shan, D., Tao, B., Fang, C., Shao, H., Xie, L., Feng, J., & Yan, G. (2021). Anodization of titanium in reduced graphene oxide-citric acid electrolyte. Results in Physics, 24, 104060.

Shibata, Y., & Tanimoto, Y. (2015). A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration, Journal of Prosthodontic Research, 59, 20-33.

Souza, M. E. P. de. (2002). Estudo do Processo de Anodização por Voltagem Modulada do Titânio e da Liga Ti-6Al-7Nb. Dissertação (Mestrado em Engenharia Mecânica) - Programa de Pós-graduação em Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 89 f.

Sul, Y., Johansson, C., Wennerberg, P., Cho, L., Chang, B., & Albrektsson, P. (2005). Optimum surface properties of oxidized implants for reinforcement of osseointegration: Surface chemistry, oxide thickness, porosity, roughness, and crystal structure. International Journal of Oral and Maxillofacial Implants, 20(3), 349-359.

Theisen, L. (2020). Anodização Porosa de Titânio em Eletrólito Livre de HF. Trabalho de Conclusão de Curso (Graduação em Engenharia Química) - Curso de Engenharia Química, Universidade Feevale, Novo Hamburgo, 74 f.

Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in colloid and interface science, 74(1-3), 69-117.

Wan, J., Yan, X., Ding, J., Wang, M., & Hu, K. (2009). Self-organized highly ordered TiO2 nanotubes in organic aqueous system. Materials Characterization, 60, 1534–1540.

Published

18/06/2022

How to Cite

KIESER, T. A.; KUNST, S. R.; MORISSO, F. D. P. .; MACHADO, T. C. .; OLIVEIRA, C. T. . Titanium anodizing in citric acid. Research, Society and Development, [S. l.], v. 11, n. 8, p. e25311830872, 2022. DOI: 10.33448/rsd-v11i8.30872. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30872. Acesso em: 25 apr. 2024.

Issue

Section

Engineerings