Soil compaction limits for Ilex paraguariensis

Authors

DOI:

https://doi.org/10.33448/rsd-v9i5.3101

Keywords:

Soil bulk density; Soil compaction degree; Soil physic quality.

Abstract

The objective of this work was to verify the effect of different soil compaction degree on the development of Ilex paraguariensis. The study was conducted in a greenhouse at UNICENTRO in Guarapuava, PR. For the culture implantation, pots of 0.15 m diameter were made with PVC tubes, subdivided into rings. The upper and lower ring presented thickness of 0.20 m and were subjected to soil compaction degree (GC) of 75%, while the intermediate ring presented thickness of 0.05 m, and received GC of 75, 80, 85, 90 and 95%. It was verified a negative effect of the mate herb growth due to soil compaction, being the soil compaction degree of 85% more favorable for the development of the Ilex paraguariensis.

Author Biographies

Jhonatan Spliethoff, Universidade Estadual do Centro Oeste do Paraná

Acadêmico de doutorado em Programa de Pós Graduação em Agronomia da Universidade Estadual do Centro Oeste.

Cristiano André Pott, Universidade Estadual do Centro Oeste

Professor e pesquisador na  Universidade Estadual do Centro-Oeste

Leandro Rampim, Universidade Estadual do Centro Oeste

Professor e pesquisador na  Universidade Estadual do Centro-Oeste

Luciano Farinha Watzlawick, Universidade Estadual do Centro Oeste

Professor e pesquisador na  Universidade Estadual do Centro-Oeste

Sidnei Osmar Jadoski, Universidade Estadual do Centro Oeste

Professor e pesquisador na  Universidade Estadual do Centro-Oeste

References

Andrade, M. L. de C., Tassinari, D., Dias Junior, M. de S., Martins, R. P., Rocha, W. W., & Souza, Z. R. de. (2017). Soil compaction caused by harvest and logging operations in eucalyptus forests in coarse-textured soils from northeastern Brazil. Ciênc. agrotec., 191–200.

Avena, V., Messina, D., Corte, C., Mussi, J., Saez, A., Boarelli, P., & Elizalde, R. P. (2019). Association between consumption of yerba mate and lipid profile in overweight women. Nutricion Hospitalaria, 36(6), 1300–1306. https://doi.org/10.20960/nh.02599

Bergamin, A. C., Vitorino, A. C. T., Franchini, J. C., de Souza, C. M. A., & de Souza, F. R. (2010). Induced compaction of a rhodic acrustox as related to maize root growth. Brazilian Society of Soil Science, 34(3), 681–691. https://doi.org/10.1590/s0100-06832010000300009

Botta, G. F., Tolón-Becerra, A., Rivero, D., Laureda, D., Ramírez-Roman, M., Lastra-Bravo, X., … Martiren, V. (2016). Compactión produced by combine harvest traffic: Effect on soil and soybean (Glycine max I.) yields under direct sowing in Argentinean Pampas. European Journal of Agronomy, 74, 155–163. https://doi.org/10.1016/j.eja.2015.12.011

Carolino de Sá, M. A., Junior, J. de D. G. dos S., Franz, C. A. B., & Rein, T. A. (2016). Soil physical quality and sugarcane yield with the use of inter-row chiseling. Pesquisa Agropecuaria Brasileira, 51(9), 1610–1622. https://doi.org/10.1590/S0100-204X2016000900061

Collares, G. L., Reinert, D. J., Reichert, J. M., & Kaiser, D. R. (2011). Surface compaction of oxisols with crops- dairy cattle production in northwest of Rio Grande do Sul, Brazil. Ciencia Rural, 41(2), 246–250. https://doi.org/10.1590/S0103-84782011000200011

Espessato, R. R., Leite, F., Guerreiro, J. C., Quiqui, E. M. Del, Azevedo, A. P. de, & Aleixo, E. V. (2017). Soybean development as a function of traffic of tractor with radial tires. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(10), 726–730. https://doi.org/10.1590/1807-1929/agriambi.v21n10p726-730

Fayad, E., El-Sawalhi, S., Azizi, L., Beyrouthy, M., & Abdel-Massih, R. M. (2020). Yerba Mate (Ilex paraguariensis) a potential food antibacterial agent and combination assays with different classes of antibiotics. LWT, 125, 109267. https://doi.org/10.1016/j.lwt.2020.109267

Fernandes, H. C., & Souza, A. P. de. (2003). Compaction of a dark-red latosol caused by forwarder traffic. Revista Árvore, 27(3), 279–284. https://doi.org/10.1590/s0100-67622003000300002

Flores, J. P. C., Anghinoni, I., Cassol, L. C., De Faceio Carvalho, P. C., Dal Belo Leite, J. G., & Fraga, T. I. (2007). Soil physical attributes and soybean yield in an integrated livestock-crop system with different pasture heights in no-tillage. Revista Brasileira de Ciencia do Solo, 31(4), 771–780. https://doi.org/10.1590/s0100-06832007000400017

Foloni, J. S. S., Calonego, J. C., & Lima, S. L. De. (2003). Effect of soil compaction on shoot and root growth of maize cultivars. Pesquisa Agropecuaria Brasileira, 38(8), 947–953. https://doi.org/10.1590/s0100-204x2003000800007

Gonçalves, W. G., Jimenez, R. L., Araújo Filho, J. V. De, Assis, R. L. De, Silva, G. P., & Pires, F. R. (2006). Root system of cover crops under soil compaction. Engenharia Agricola, 26(1), 67–75. https://doi.org/10.1590/s0100-69162006000100008

Grzesiak, M. T., Janowiak, F., Szczyrek, P., Kaczanowska, K., Ostrowska, A., Rut, G., … Grzesiak, S. (2016). Impact of soil compaction stress combined with drought or waterlogging on physiological and biochemical markers in two maize hybrids. Acta Physiologiae Plantarum, 38(5), 109. https://doi.org/10.1007/s11738-016-2128-4

Hamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and Tillage Research, 82(2), 121–145. https://doi.org/10.1016/j.still.2004.08.009

Klein, V. A., Madalosso, T., & Baseggio, M. (2013). Proctor compaction test – methodology analysis and worksheet to calculate the maximum soil density and optimum moisture content. Journal of Agroveterinary Sciences, 12(2), 199–203. Recuperado de http://www.revistas.udesc.br/index.php/agroveterinaria/article/view/5214/3391

Kormanek, M., Głąb, T., Banach, J., & Szewczyk, G. (2015). Effects of soil bulk density on sessile oak Quercus petraea Liebl. seedlings. European Journal of Forest Research, 134(6), 969–979. https://doi.org/10.1007/s10342-015-0902-2

Kozlowski, T. T. (1999). Soil compaction and growth of woody plants. Scandinavian Journal of Forest Research, 14(6), 596–619. https://doi.org/10.1080/02827589908540825

Lanzanova, M. E., Da Silveira Nicoloso, R., Lovato, T., Eltz, F. L. F., Amado, T. J. C., & Reinert, D. J. (2007). Soil physical attributes in integrated cattle raising-crop production system under no-tillage. Revista Brasileira de Ciencia do Solo, 31(5), 1131–1140. https://doi.org/10.1590/s0100-06832007000500028

Lopes, E. D. S., Oliveira, D. De, Rodrigues, C. K., & Drinko, C. H. (2015). Compaction of a Soil Subjected to the Traffic of Harvesters and Forwarders During Wood Harvesting. Floresta e Ambiente, 22(2), 223–230. https://doi.org/10.1590/2179-8087.046413

Luís, Â. F. S., Domingues, F. da C., & Amaral, L. M. J. P. (2019). The anti-obesity potential of ilex paraguariensis: Results from a meta-analysis. Brazilian Journal of Pharmaceutical Sciences, 55. https://doi.org/10.1590/s2175-97902019000217615

Marques, A. D. C., Reis, M. S. Dos, & Denardin, V. F. (2019). Yerba mate landscapes: forest use and socio-environmental conservation. Ambiente & Sociedade, 22. https://doi.org/10.1590/1809-4422asoc201702822vu2019l3ao

Mazurana, M., Levien, R., Müller, J., & Conte, O. (2011). Soil tillage systems: changes in soil structure and crop response. Brazilian Society of Soil Science, 35(4), 1197–1206. https://doi.org/10.1590/S0100-06832011000400013

Migotto, D. L. (2015). Desempenho e digestibilidade de nutrientes para frangos de corte alimentados com rações contendo extrato de erva mate (Ilex paraguariensis). Universidade de Brasília, Brasília. https://doi.org/10.26512/2015.06.D.18708

Müller, M. M. L., Ceccon, G., & Rosolem, C. A. (2001). Influence of subsurface soil compaction on the growth of the aerial parts and roots of winter green manure species. Revista Brasileira de Ciência do Solo, 25(3), 531–538. https://doi.org/10.1590/s0100-06832001000300002

Nawaz, M. F., Bourrié, G., & Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33(2), 291–309. https://doi.org/10.1007/s13593-011-0071-8

Oliveira, S. V. De, & Waquil, P. D. (2015). Dynamics of production and commercialization of yerba mate in Rio Grande do Sul, Brazil. Ciencia Rural, 45(4), 750–756. https://doi.org/10.1590/0103-8478cr20140276

Orzech, K., & Załuski, D. (2020). Effect of soil compaction and different soil tillage systems on chemical properties of soil and presence of earthworms in winter oilseed rape fields COSMOS-Camelina & crambe Oil crops as Sources for Medium-chain Oils for Specialty oleochemicals. Article in Journal of Elementology. https://doi.org/10.5601/jelem.2019.24.2.1874

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (1o ed, Vol. 1). Santa Maria, RS: UFSM, NTE.

Prado Martin, J. G., Porto, E., de Alencar, S. M., da Glória, E. M., Corrêa, C. B., & Ribeiro Cabral, I. S. (2013). Actividad antimicrobiana de la yerba mate (Ilex paraguariensis St. Hil.) contra patógenos alimentarios. Revista Argentina de Microbiologia, 45(2), 93–98. https://doi.org/10.1016/S0325-7541(13)70006-3

Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R., & Håkansson, I. (2009). Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research, 102(2), 242–254. https://doi.org/10.1016/J.STILL.2008.07.002

Resende, M. D. V. de;, Sturion, J. A. ., Carvalho, A. P. de;, Simeão, R. M. ., & Fernandes, J. S. . (2000). Programa de Melhoramento da Erva Mate coordenado pela Embrapa: resultados da avaliação genética de populações, progênies, indivíduos e clones. (C. Técnica, Org.), Embrapa Florestas. Colombo: Embrapa Florestas.

Ribeiro, M. A. V., Novais, R. F., Faquin, V., Ferreira, M. M., Furtini Neto, A. E., Lima, J. M. de, & Villani, E. M. de A. (2010). Soybean and eucalyptus response to increased soil density and phosphorus doses. Brazilian Society of Soil Science, 34(4), 1157–1164. https://doi.org/10.1590/S0100-06832010000400015

Ribeiro, V. R., Maciel, G. M., Fachi, M. M., Pontarolo, R., Fernandes, I. de A. A., Stafussa, A. P., & Haminiuk, C. W. I. (2019). Improvement of phenolic compound bioaccessibility from yerba mate (Ilex paraguariensis) extracts after biosorption on Saccharomyces cerevisiae. Food Research International, 126, 108623. https://doi.org/10.1016/j.foodres.2019.108623

Rienzi, E. A., Maggi, A. E., Scroffa, M., Lopez, V. C., & Cabanella, P. (2016). Autoregressive state spatial modeling of soil bulk density and organic carbon in fields under different tillage system. Soil & Tillage Research, 159, 56–66. https://doi.org/10.1016/j.still.2016.01.006

Santos, H. dos, Jacomine, P., Anjos, L. dos, Oliveira, V. de, Lumbreras, J. F., Coelho, M., … Cunha, T. J. F. (2018). Brazilian system of soil classification - Embrapa. (Embrapa, Org.) (5o ed). Brasília, DF: Embrapa. Recuperado de https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileiro-de-classificacao-de-solos

Santos, F. S., Zeoula, L. M., De Lima, L. S., De Marchi, F. E., Ítavo, L. C. V., Santos, N. W., … Dos Santos, G. T. (2019). Effect of supplementation with Yerba Mate (Ilex paraguariensis) and vitamin E on milk lipoperoxidation in cows receiving diets containing ground soybean seeds. Journal of Dairy Research, 86(3), 279–282. https://doi.org/10.1017/S0022029919000529

Silva, S. de D. da;, Alves, J. M., Mesquita, G. M., & Leandro, W. M. (2012). Effect of soil compaction in the air and root development of jatropha (Jatropha curcas L.) and crambe (Crambe abyssinica Hochst). Global Science and Technology, 5(2), 87–97. Recuperado de https://repositorio.bc.ufg.br/xmlui/handle/ri/15171

Silva, F.A.S., & Azevedo, C.A.V. (2016). The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, 11(39):3733-3740. https://doi.org/10.1590/s0100-204x201600090006110.5897/AJAR2016.11522

Souza, J. T. de, Talgatti, M., Silveira, A. G. da, Menezes, W. M. de, Haselein, C. R., & Santini, E. J. (2019). Mechanical properties of MDP produced with wood particles of Ilex paraguariensis, Pinus elliottii e Eucalyptus grandis. Scientia Forestalis, 47(122), 273–285. https://doi.org/10.18671/scifor.v47n122.10

Suzuki, L. E. A. S., Reichert, J. M., Reinert, D. J., & Lima, C. L. R. de. (2007). Relative compaction, physical properties and crop yield in Oxisol and Alfisol. Pesq. agropec. bras, 42(8), 1159–1167.

Szymczak, D. A., Brun, E. J., Reinert, D. J., Frigotto, T., Mazzalira, C. C., Dal’Col Lúcio, A., & Marafiga, J. (2014). Soil compaction caused by forest tractors in the Pinus taeda L. harvesting in the South-Western region of Paraná. Revista Arvore, 38(4), 641–648. https://doi.org/10.1590/S0100-67622014000400007

Tuzzin de Moraes, M., Debiasi, H., Carlesso, R., Cezar Franchini, J., Rodrigues da Silva, V., & Bonini da Luz, F. (2016). Soil physical quality on tillage and cropping systems after two decades in the subtropical region of Brazil. Soil and Tillage Research, 155, 351–362. https://doi.org/10.1016/J.STILL.2015.07.015

Published

25/03/2020

How to Cite

SPLIETHOFF, J.; POTT, C. A.; RAMPIM, L.; WATZLAWICK, L. F.; JADOSKI, S. O. Soil compaction limits for Ilex paraguariensis. Research, Society and Development, [S. l.], v. 9, n. 5, p. e23953101, 2020. DOI: 10.33448/rsd-v9i5.3101. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3101. Acesso em: 9 jan. 2025.

Issue

Section

Agrarian and Biological Sciences