Application of mixed models in the study of the adaptability and stability of short-day and neutral-day strawberry cultivars

Authors

DOI:

https://doi.org/10.33448/rsd-v9i5.3104

Keywords:

Fragaria x ananassa Duch; Genotype x environment; Interaction; REML / BLUP; MHPRVG.

Abstract

In strawberry the environmental elements affect the characteristics of productivity and physico-chemical quality of the fruits, when evaluated in different environments. To mitigate the effects of genotype x environment interaction, it is necessary to predict adaptability and stability to identify cultivars with predictable performances between environments. In this context, the objective was to estimate the adaptability and stability of strawberry cultivars using the REML / BLUP procedure. The experiments were carried out in different environments in edaphoclimatic aspects, with 13 strawberry cultivars in a randomized block design, with four replications. As they are characteristics of quantitative origin, the number of commercial fruits (NFC) and mass of commercial fruits (MFC) presented low h2mg, the other characteristics presented values of moderate and high magnitudes for h2mg (0.50 to 0.95). There were changes in the cultivar ordering between environments, reflecting the genotypic correlation between environments, which varied between characteristics. The cultivars highlighted in the ordering through genotypic values were also highlighted by the MHPRVG method. The cultivars Albion, Camarosa and Camino Real were the best for most traits by the MHPRVG method, which reveals good adaptability and stability of these cultivars in relation to the evaluated environments. The mixed model methodology was efficient for selecting superior cultivars in the evaluated environments. Of the tested cultivars Albion, Camarosa and Camino Real were the ones that showed greater adaptability and stability by the MHPRVG method for the environments under study.

References

AOAC – Official Methods of Analysis of AOAC International/Dr Willian Horwitz. 2000. 17. Ed. Maryland: AOAC International.

Bhering, SB (2020). Mapa de Solos do Estado do Paraná. Embrapa Solos - Documentos (INFOTECA-E). Available In: Https://Www.Infoteca.Cnptia.Embrapa.Br/Infoteca/Handle/Doc/339505. (Acessed 19 February 2020).

Bilbao‐Sainz, C (2019). Functionality of Strawberry Powder on Frozen Dairy Desserts. Journal of Texture Studies, 1-8. (Autores, por gentileza, verifiquem se os dados da referência estão incompletos... Se é artigo de revista: qual volume? Numero? Etc... verifiquem e se necessário, acertem)

Claire, D (2018). High Productivity of Soilless Strawberry Cultivation Under Rain Shelters. Scientia Horticulturae 232(1): 127-138.

Cocco, C (2015). Effects of Site and Genotype on Strawberry Fruits Quality Traits and Bioactive Compounds. Journal of Berry Research 5(1): 145-155.

Costa, AF (2015). Adaptability and Stability of Strawberry Cultivars Using a Mixed Model. Acta Scientiarum Agronomy 37(1): 435-440.

Cruz, CD (2012). Modelos Biométricos Aplicados ao Melhoramento Genético. Viçosa: UFV, 508 P.

Dantas, AAA (2007). Classificação e Tendências Climáticas em Lavras, MG. Ciência E Agrotecnologia 31: 1862-1866.

Edger, PP (2019). Origin and Evolution of The Octoploid Strawberry Genome. Nature Genetics. 51(1): 541.

FAOSTAT (2019). Food and Agriculture Organization Corporate Statistical Database: FAO Online Database, Available At: Http://Www.Fao.Org/Faostat/En/#Data

FEAM – Fundação Estadual Do Meio Ambiente. Banco De Solos De Minas Gerais. Available In: Http://Www.Feam.Br/Banco-De-Noticias/949-Mapas-De-Solo-Do-Estado-De-Minas-Gerais. Acessed on 19 February 2020..

Francis, FJ (1982). Analysis of Anthocyanins. In: MARKAKIS, P. Anthocyanins as Food Colors. London: Academic Press, 1982. P.181-206.

Gabriel, A (2018). Phenotypic Stability Of Strawberry Cultivars Assessed. In Three Environments. Genetics and Molecular Research 17: 1-11.

Garcia, ME (2016). Strawberry Cultivar Performance in High Tunnels Under Sustainable and Organic Production Practices in Three Climatic Regions of Arkansas. Acta Horticulturae 1156(1): 549-554.

Gawroński, J (2011). Evaluation of The Genetic Control, Heritability and Correlations of Some Quantitative Characters in Strawberry (Fragaria × Ananassa Duch.). Acta Scientiarum Polonorum-Hortorum Cultus 10(1): 71-76.

Hancock, JF (2008). Strawberries. In: HANCOCK, J.F. Temperate Fruit Crop Breeding. Springer: Dordrecht. P.393-437.

Khatun, M (2019). Resource Use Efficiency Analysis in Strawberry Production in Selected Areas of Bangladesh. SAARC Journal of Agriculture 17(1): 189-200.

Mathey, MM (2017). Genotype by Environment Interactions and Combining Ability for Strawberry Families Grown in Diverse Environments. Euphytica 213(1): 112.

Mishra, PK (2015). Genetic Variability, Heritability, and Genetic Advance in Strawberry (Fragaria × Ananassa Duch.). Turkish Journal of Agriculture and Forestry, 39(1): 451-458.

Niziol, J (2019). Mass Spectrometry Imaging of Low Molecular Weight Metabolites in Strawberry Fruit (Fragaria X Ananassa Duch.) Cv. Primoris with 109Ag Nanoparticle Enhanced Target. Phytochemistry, 159(1):11-19.

Palmieri, L (2017). Genotype‐By‐Environment Effect on Bioactive Compounds in Strawberry (Fragaria X Ananassa Duch.). Journal of The Science of Food and Agriculture, 97(1): 4180-4189.

Patil, RL (2016). Knowledge Level of Sustainable Cultivation Practices Followed by Strawberry Growers. International Journal of Tropical Agriculture 34: 2127-2136.

Pereira, A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 20 março 2020.

Pešaković, M (2013). Biofertilizer Affecting Yield Related Characteristics of Strawberry (Fragaria × Ananassa Duch.) and Soil Micro-Organisms. Scientia Horticulturae 150(1): 238-243.

Resende, MDV (2004). Métodos Estatísticos Ótimos na Análise de Experimentos de Campo. Colombo: Embrapa Florestas.

Resende, MDV (2007). SELEGEN REML/BLUP: Sistema Estatístico E Seleção Genética Computadorizada Via Modelos Lineares Mistos. Colombo: Embrapa Florestas.

Resende, MDV (2007). Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, 37(1): 182-194.

Samtani, JB (2019). The status and future of the strawberry industry in The United States. Horttechnology. 29(1): 11-24.

Samykanno, K (2013). Genotypic and Environmental Effects on Flavor Attributes of ‘Albion’ and ‘Juliette’ Strawberry Fruits. Scientia Horticulturae 164(1): 633-642.

Şener, S & Türemiş, NF (2016). Effects of genotype and fertilization on fruit quality in several harvesting periods of organic strawberry plantation. International Journal Of Agriculture Innovations And Research 5(1): 252-256.

Silva, EMD (2013). A Cidade E O Clima: Impactos das precipitações concentradas e as tendências climáticas em Uberlândia-MG. 346 F. Tese (Doutorado Em Geografia) – Uberlândia: Universidade Federal De Uberlândia.

Singh, G (2018). Genetic Variability and Association Analysis in Strawberry (Fragaria X Ananassa Duch). Electronic Journal Of Plant Breeding 9(1): 169-182.

Whitaker, VM (2012). Estimation of Genetic Parameters For 12 Fruit and Vegetative Traits in The University of Florida Strawberry Breeding Population. Journal of The American Society for Horticultural Science 137(1): 316-324.

Wrege, MS (2012). Atlas Climático Da Região Sul Do Brasil: Estados Do Paraná, Santa Catarina E Rio Grande Do Sul. 2. Ed. Brasília: Embrapa.

Published

31/03/2020

How to Cite

RESENDE, J. V.; GABRIEL, A.; MOREIRA, A. F. P.; GONÇALVES, L. S. A.; RESENDE, N.; DE GOES, C. D. M.; ZANIN, D. S. Application of mixed models in the study of the adaptability and stability of short-day and neutral-day strawberry cultivars. Research, Society and Development, [S. l.], v. 9, n. 5, p. e110953104, 2020. DOI: 10.33448/rsd-v9i5.3104. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3104. Acesso em: 8 nov. 2024.

Issue

Section

Agrarian and Biological Sciences