Influence of carbon: nitrogen relations on water quality, zooplanktonic biomass and biofloc maturation
DOI:
https://doi.org/10.33448/rsd-v11i9.31196Keywords:
Nitrogen compounds; Microbial flakes; Zooplankton.Abstract
The biofloc system (biofloc technology - BFT) has high efficiency in the production of aquatic organisms and with low polluting potential. Its principle is the heterotrophic bacteria growth, obtained by maintaining the carbon: nitrogen (C: N) ratio in the medium, which will transform undesirable componentes, such as ammonia and nitrite, into less toxic compounds and with some protein value. This system consists of maintaining the carbon: nitrogen ratio (C: N). The main constitution of bioflocs are microalgae, feces, exoskeletons, feed and dead animal remains, bacteria, rotifers, protozoa, other invertebrates, in complex interaction in the water column. This work aimed to evaluate the variation of water quality, the zooplanktonic biomass present in the BFT formed with three carbon: nitrogen ratios, as well as to verify diferences in maturation time among C: N ratios. The bioflocs were formed using refined sugar as a carbon source, three treatments were tested with different carbon: nitrogen ratios, 10: 1, 15: 1 and 20: 1. Ammonia, nitrite, nitrate, orthophosphate, alkalinity, temperature, dissolved oxygen and pH were measured at intervals of 3 to 4 days. The physical and chemical parameters of the water showed no significant differences between treatments, with the exception of orthophosphate, which showed a difference in treatment 20: 1. The maturation of the 20: 1 treatment occurred only 3 days after the maturation of the 10: 1 and 15: 1 treatment and the zooplanktonic density did not differ among treatments. It is recommended to use the 10: 1 carbon: nitrogen ratio, since there will be an economy in the amount of carbon offered to the medium and, consequently, a lower production cost.
References
Ahmad, I., Rani, A. M. B., Verma, A. K., & Maqsood, M. (2017). Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquaculture International, 25, 1215–1226.
Asaduzzaman, M. et al. (2010). Effect of C/N ratio and substrate additionon natural food communities in freshwater prawn monoculture ponds. Aquaculture, 306. 127 136 p.
Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge e bioflocs technology ponds. Aquaculture 264:140–147.
Avnimelech, Y., & Ritvo, G. (2003). Shrimp and fish pond soils: processes and management. Aquaculture, 220: 549– 567.
Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), 227-235.
Azim, M. E., & Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4), 29-35.
Barbieri, E. (2010). Acute toxicity of ammonia in White shrimp (Litopenaeus schmitti) (Burkenroad, 1936, Crustacea) at different salinity levels. Aquaculture, 302(1-4): 231-237.
Boopathy, R., Fontenot, Q., & Kilgen, M. (2005). Biological treatment of sludge from a recirculating aquaculture system using a sequencing batch reactor. Journal of the World Aquaculture Society 36. 542–545 p.
Brito, L. O., Simão, B. R., Pereira Neto, J. B., Cemirames, G., & Azevedo, C. M. D. S. B. D. (2017). Densidade Planctônica do Policultivo de Litopenaeus vannamei e Oreochromis niloticus. Ciência Animal Brasileira, 18.
Burford, M. A., Thompson, P. J., Mcintosh, R. P., & Bauman, R. H. et al. (2003). Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture 219, 393-411.
Campos, B. R et al. (2012). Toxicidade aguda da amônia, nitrito e nitrato sobre os juvenis de camarão-rosa Farfantepenaeus brasiliensis (Latreille, 1817) (Crustacea: Decapoda). Atlântica (Rio Grande), 34(1), 75-81.
CervanteS-Carrillo, F., Pérez, J., & Gómez, J. (2000). Avances en la eliminación biológica del nitrógeno de las aguas residuales. Revista Latinoamericana de Microbiología (42), p. 73-82.
Chamorro-Legarda, E. (2018). Açúcar refinado como fonte de carbono no berçário de camarões cultivados em sistema de bioflocos. Boletim do Instituto de Pesca, 42(2), 443-448.
Chen, S., Ling, J., & Blancheton, J. (2006). Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural Engineering, 179-197.
Faria, A. C. E. A., Hayashi, C., Soares, C. M., & Gonçalves, G. S. (2000). Avaliação dos grupos zooplanctônicos em tanques experimentais submetidos a adubação com diferentes substratos orgânicos. Acta Scientiarum. Biological Sciences, 22, 375-381.
De Schryver, P. et al. (2008). O básico da tecnologia de bio-flocos: o valor agregado para a aquicultura. Aquaculture, 277(3-4), 125-137.
Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiomtry of photoautotrophic, autotrophic, and heterotrophic control of ammonia-nitrogen in aquaculture in aquaculture production systems. Aquaculture, 257: 346-358.
Emerenciano, M., & Coelho G. et al. (2017). Biofloc technology (BFT): a tool for water quality management in aquaculture. Water quality, 5, 92-109.
Emerenciano, M., Gaxiola, G., & Cuzon, G. (2013). Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Biomass now-cultivation and utilization. InTech.
Emerenciano, M. G., Wasielesky, W. J., Soares, R. B., Ballester, E.C., Izeppi, E.M., & Cavalli, R.O. (2007). Crescimento e sobrevivência do camarão-rosa (Farfantepenaeus paulensis) na fase de berçário em meio heterotrófico. Acta Scientiarum Biological Sciences, 29: 1-7.
Feng Y. J., Tseng S. K., Hsia T. H., Ho, C. M., & C, W. P. (2007). Partial nitrification of ammonium rich wastewater as pretreatment for Anaerobic Ammonium Oxidation (Anammox) using Membrane Aeration Bioreactor. Journal of Bioscience and Bioengineering 104(3):182-187.
Ferreira, E. S. I-121. (2000). Cinética química e fundamentos dos processos de nitrificação e denitrificação biológica.
Gandini, F. A. et al. (2016). Avaliação de diferentes fontes de carboidratos para o sistema de bioflocos e crescimento do camarão branco. Bol. Inst. Pesca, São Paulo, 42(4), p. 831-843.
García, C., & Alvarez, L. (2018). Implementación y caracterización de un sistema biofloc (bft) en condiciones climáticas de Ocaña, Norte de Santander. Revista colombiana de zootecnia, 4(7).
Gálvez, A. O. (2015). Plankton communities in shrimp monoculture, integrated biofloc system. CEP, 52171, p. 900.
Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquac. Eng. 34, 344-363.
Hargreaves, J. A. (2013). Biofloc Production Sistems for Aquaculture. Southern Regional Aquaculture Center. 4503, 1–12.
Jiménez-Pacheco, F. (2017). Presencia y abundancia de fitoplancton y zooplancton en un sistema de producción de Biofloc utilizando dos aportes de carbono: 1) Melaza y 2) Melaza+ pulido de arroz cultivando al pez Oreochromis niloticus.
Kuhn, D. D., Lawrence, A. L., Boardman, G. D., Patnaik, S., Marsh, L., & Flick, G. J. (2010). Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture, Amsterdam, 303, p. 28–33.
Krummenauer, D., Lara, G., Foés, G., Poersch, L. H., & Wasielesky, W. JR. (2013). Sistema de Bioflocos: É possível reutilizar a água por diversos ciclos? Panorama da aquicultura, 136(23): 40 -47.
Lorenzini, J. P. S. (2018). Avaliação do uso de substrato no desempenho e qualidade de água de camarão marinho (Litopenaeus vannamei) mantidos em berçário em sistema de bioflocos.
Lovera, K. P., Zapata et al. (2018). Cultivo de alevinos de tilápia em sistema de bioflocos sob diferentes relações carbono/nitrogênio. Boletim do Instituto de Pesca, 43(3), p. 399–407-399–407.
Maia, E. P., Leal, A., Correia, E. S., Pereira, A. L., & Olivera, A. (2003). Caracterização planctônica de cultivo super-intensivo de Litopenaeus vannamei. Revista da ABCC, 5(2), p.60-62.
Martinez, C. L., Ezquerra, B. M., Bringas, A. L., Aguirre, H. E., Garza, A. M. (2002). Optimización de alimentos y prácticas de alimentación en el cultivo de camarón en el noroeste de México. Memorias del VI Simposium Internacional de Nutrición Acuícola. Cancún (México); 559-581.
Melo, F. P et al. (2015). Cultivo do camarão marinho com bioflocos sob diferentes níveis de proteína com e sem probiótico. Revista Caatinga, 28(4), p. 202-210.
Monroy-Dosta, M. D. C., Lara-Andrade, D., Castro-Mejía. J., Castro-Mejía, G., & Emerenciano, M. (2013). Composición y abundancia de comunidades microbianas asociadas al biofloc en un cul tivo de tilapia. Journal of Marine Biology and Oceanography (RBMO), 48(3) -511-520.
NBR L5.304 – 2° Edição Cetesb (2012). Zoopâncton de água doce: métodos qualitativo e quantitativo.
Oliveira, S. S. et al. (2006). Caracterização da assembléia de bactérias nitrificantes pelo método "Fluorescent in situ hybridization" (fish) no biofilme e água de larvicultura do Camarão-rosa Farfantepenaeus paulensis. Atlântica, Rio Grande, 28(1), p. 33-45.
Pereira, L., & Mercante, C. A. (2018). Amônia nos sistemas de criação de peixes e seus efeitos sobre a qualidade da água. Uma revisão. Boletim do Instituto de Pesca, 31(1), p. 81-88.
Perez, A.J.D. (2010). Aplicación y evaluación de un reactor de contactores biológicos rotativos (RBC o biodiscos), a escala de laboratorio como tratamiento de los lixiviados generados en el relleno sanitario de la Pradera. Tesis de Maestría Ingeniería Urbana, Facultad de Ingenierías, Universidad de Medellín, Medellín, 259 pp.
Philips, S., Laanbroek, H. J., & Verstraete, W. (2002). Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev. Environ. Sci. Biotechnol. 1, 115-141.
Ray, A. J., Seaborn, G., Leffler, J. W., Wilde, S. B., Lawson, A., & Browdy, C. L. (2010). Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture 310:130–138.
Samocha, T. M., Patnaik, S., Speed, M., Ali, A. M., Burger, J. M., Almeida, R. V., Ayub, Z., Harisanto, M., Horowitz, A., & Brock, D. L. (2007) Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36, 184-191.
Schneider, O., Sereti, V., Eding, E., & Verreth, J. (2006). Molasses as C source for heterotrophic bacteria production on solid fish waste. Aquaculture 261, 1239-1248
Seolatto, M (2017). Bagaço de mandioca como fonte de carbono em sistemas de bioflocos para a criação de alevinos de tilápia do Nilo (Oreochromis niloticus). Monografia. Universidade Estadual do Oeste do Paraná – Toledo.
Silva, J. L. S., Rodríguez, M. T. T., & Sousa, O. V. (2020). Effect of the addition of native nitrifying bacteria in the formation of bioflocs for the improvement of the quality of the water of culture of aquatic organisms. Brazilian Journal of Development, 6(6), p. 33870-33891.
Silva, U. L. et al (2018). Resposta fitoplanctônica à diferentes fontes de carbono e relações c: n na alevinagem de tilápia cultivada com bioflocos. Boletim do Instituto de Pesca, 44(2), 155-160.
SIlva, U. L. et al. (2017). Fontes de carbono e proporções C: N na qualidade da água para o cultivo de tilápia do Nilo em sistema biofloco. Revista Caatinga, 30(4), 1017-1027.
Straile, D., & Geller, W. (1998). Crustacean zooplankton in Lake Constance from 1920 to 1995: Response to eutrophication and re-oligotrophication. Advances in Limnology, 53, p. 255-274.
Thompson, F. L., Abreu, P. C., & Wasielesky, W. J.R. (2002). Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture. 203: 263-278.
Vijayan, K. K., Panigrahi, A., Balasubramanian, C. P., Jayanthi, M., Saraswathy, R., Kannappan, S., & Vasagam, K. K. (2019). Biofloc Technology for Nursery and Growout Aquaculture.
Vilani, F. G. et al. (2012). Uso do farelo de arroz na fertilização da água em sistema de cultivo com bioflocos e seu efeito sobre o desempenho zootécnico de Litopenaeus vannamei.
Wurts, W. A., & Durborow, R. M. (1992). Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds. Aquaculture program. SRAC-public, 464, 1-4.
Xu, W., Morris, T. C., & Samocha, T. M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453, 169-175.
Zhao, P., Huang, J., Wang, X. H., Song, X. L., Yang, C. H., Zhang, X. G., & Wang, G. C. (2012). The application of bioflocs technology in high-intensive, zero Exchange farming systems of Marsupenaeus japonicus. Aquaculture, Amsterdam, 354-355, 97-106.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Guido Luis Bianchini Dalke; Grace Kelly Goudinho Pires; Maria do Carmo Gominho-Rosa; Nyamien Yahaut Sebastien; Robie Allan Bombardelli
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.