Inbreeding and its effects on the Holstein breed

Authors

DOI:

https://doi.org/10.33448/rsd-v11i8.31288

Keywords:

Inbreeding; Homozygosity; Selection; Dominance; Genetic diversity.

Abstract

Inbreeding depression as a consequence of mating between related animals, driven by reproductive biotechnologies and selection methods, affects traits of zootechnical interest, which causes economic and genetic diversity losses, in addition to limiting genetic progress. This review article exposes, through narrative review, causes and effects of inbreeding depression, with special attention to inbreeding coefficient estimates. From classical inbreeding coefficient calculated by pedigree to modern methodologies that indicate real levels of allele sharing, such as matrices of genomic relationships and homozygous races (ROH) are presented. The impact of inbreeding depression on traits related to production, health, fertility, and conformation is discussed in the context of different Holstein populations. It is concluded that much is known about inbreeding depression in Holstein populations; however, with the advent of genomics, and with it new approaches, the understanding of inbreeding depression can be expanded.

References

Adamec, V., Cassel, B. G., Smith, E. P., & Pearson, R. E. (2006). Effects of Inbreeding in the Dam on Dystocia and Stillbirths in US Holsteins. Journal of Dairy Science. 89: 307-314.

Baes C. F., Makanjoula, B. O., Miglior, F., Marras, G., Howard, J. T., Fleming, A., & Maltecca, C. (2019). The genomic architecture of inbreeding: How homozygosity affects health and performance. Journal of Dairy Science. 102: 2807-2817.

Ballou, J. (1983) Calculating Inbreeding Coefficients from Pedigrees. Genetics and Conservation.

Beiguelman, B. (2008) Genética de Populações Humanas. Editora SBG.

Biffani, S., Samoré, A. B., & Canavesi, F. (2002). Inbreeding depression for production, reproduction and functional traits in Italian Holstein cattle. Proceedings of the 7th World Congress on Genetics Applied to Livestock Production.

Boyrie, L., Moreau, C., Frugier, F., Jacquet, C., & Bonhomme, M. (2021). A linkage disequilibrium-based statistical test for Genome-Wide Epistatic Selection Scans in structured populations. Heredity. 126: 77-91.

Caetano, A.R. (2009). Marcadores SNP: conceitos básicos, aplicações no manejo e no melhoramento animal e perspectivas para o futuro. Revista Brasileira de Zootecnia.

Cassel, B. G., Adamec, V., & Pearson, R. E. (2003). Maternal and Fetal Inbreeding Depression for 70-Day Nonreturn and Calving Rate in Holsteins and Jerseys. Journal of Dairy Science. 86: 2977-2983.

Charlesworth, B., & Charlesworth, D. (1999). The genetic basis of inbreeding depression. Genetics Research. 74(3):329-40.

Charlesworth, D., & Willis, J. H. (2009). The genetics of inbreeding depression. Nature Reviews Genetics. 10: 783-796.

Croquett, C., Mayeres, P., Gillon, A., Hammami, H., Soyeurt, H., Vanderick, S., & Gengler, N. (2007). Linear and Curvilinear Effects of Inbreeding on Production Traits for Walloon Holstein Cows. Journal of Dairy Science. 90: 465-471.

DeRose, M. A., & Roff, D. A. (1999). A comparison of inbreeding depression in life-history and morphological traits in animals. Evolution. 53: 1288-1292.

Doekes, H. P., Veerkamp, R. F., Bijma, P., de Jong, G., Hiemstra, S. J., & Windig, J. J. (2019). Inbreeding depression due to recent and ancient inbreeding in Dutch Holstein–Friesian dairy cattle. Genetics Selection Evolution. 51:54.

Doekes, H.P., Bijma, P., Veerkamp, R.F., Jong, G., Wientjes, Y.C.J., & Windig, J.J. Inbreeding depression across the genome of Dutch Holstein Friesian dairy cattle. Genetics Selection Evolution. 28: 52.

Driscoll, C. A., Macdonald, D. W., & O'Brien, J. (2009). From wild animals to domestic pets, an evolutionary view of domestication. Proceeding of the National Academy of Sciences of the United States of America. 106: 9971-9978.

Falconer, D. S. & Mackay T. F. C. (1989). Introduction to quantitative genetics. Longman Scientific & Technical.

Ferenčaković, M., Hamzic, E., Gredler, B., Curik, I., & Sölkner, J. (2011). Runs of Homozygosity reveal genome-wide autozygosity in the Austrian Fleckvieh Cattle. Agriculturae Conspectus Scientificus. 76: 325-328.

Gonzalez-Recio, O.G., Maturana, E., & Gutiérrez, J.P. (2008). Inbreeding depression on female fertility and calving ease in Spanish dairy cattle. Journal of Dairy Science. 90: 5744-52.

Haldane, J. B. S. (1927). A mathematical Theory of Natural and Artificial Selection, Part V: Selection and Mutation.

Hartl, D. L. & Clark, A. G. (2010). Princípios de genética de populações. Artmed.

Hill, W. G. (2014). Applications of Population Genetics to Animal Breeding, From Wright, Fisher and Lush to Genomic Prediction. Genetics. 196(1):1-16.

Howard, J. T., Pryce, J. E., Baes, C., & Maltecca, C. (2017). Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. Journal of Dairy Science. 100: 6009-6024.

Kardos, M., Luikart, G., & Allendorf, F. W. (2015). Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity. 115: 63-72.

Kearney J. F., Wall, E., Villanueva, B., & Coffey, M. P. (2004). Inbreeding Trends and Application of Optimized Selection in the UK Holstein Population. Journal of Dairy Science. 87: 3503-3509.

Kim E. S., Sonstegard T. S., Van Tassell C.P., Wiggans G., & Rothschild M.F. (2015). The Relationship between Runs of Homozygosity and Inbreeding in Jersey Cattle under Selection. Plos One.10(7): e0129967.

Kim E. S, Cole, J. B., Huson, H., Wiggans, G. R., Tassel C. P. V., Crooker, B. A., Liu, G., & Sonstegard, Y. D. T. S. (2013). Effect of Artificial Selection on Runs of Homozygosity in U.S. Holstein Cattle. Plos One. 8(11): e80813

Kristensen T. N. & Sørensen A. C. (2005). Inbreeding – lessons from animal breeding, evolutionary biology and conservation genetics. Animal Science. 80: 121-133.

Leroy, G. (2014). Inbreeding depression in livestock species: review and meta-analysis. Animal Genetics. 45 (5): 618-628.

Ma, L., Sonstegard, T. S., Cole, J. B., VanTassel, C. P., Wiggans, G. R., Crooker, B. A., Tan, C., Prakapenka, D., Liu, G. E., & Da, Y. (2019). Genome changes due to artificial selection in U.S. Holstein cattle. BMC Genomics. 20:128.

Makanjuola, B.O., Maltecca, C., Miglior, F., Schenkel, F.S., & Baes, C. (2020). Effect of recent and ancient inbreeding on production and fertility traits in Canadian Holstein. BMC Genomics. 21: 605.

Makgahlela, M. L., Strandén, I., Nielsen, U. S., Sillanpää, M. J., & Mäntysaari, E. A. (2013). The estimation of genomic relationships using breedwise allele frequencies among animals in multibreed populations. Journal of Dairy Science. 96: 5394-5375.

Malécot, G. (1948). Les mathématiques de l’hérédité. Masson.

Marth, G. T., Korf, I., Yandell, M. D., & Yeh, R. T. (2000). A general approach to single-nucleotide polymorphism discovery. Nature Genetics. 23: 452-456.

Martikainen, K., Koivula, M., & Uimari, P. (2020). Identification of runs of homozygosity affecting female fertility and milk production traits in Finnish Ayrshire cattle. 3804.

Mc Parland, S., Kearney, J. F., Rath, M., & Berry, D. P. Inbreeding Effects on Milk Production, Calving Performance, Fertility, and Conformation in Irish Holstein-Friesians. Journal of Dairy Science. 90: 4411-4419.

Mc Parland, S., Kearney, J. F., & Berry, D.P. (2009). Purging of inbreeding depression within the Irish Holstein-Friesian population. Genetics Selection Evolution. 41: 16.

Merilä, J. & Sheldon, B. C. (1999). Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity. 83: 103-109.

Miglior, F., Szkotnicki, B., & Burnside, E. B. (1992). Analysis of levels of inbreeding and inbreeding depression in Jersey cattle. Journal of Dairy Science. 75: 1112-1118.

Moorad, J. A. & Wade, M. J. (2005). A Genetic Interpretation of the Variation in Inbreeding Depression. 170(3):1737-1384.

Nietlisbach, P., Keller, L. F., & Postma, E. (2016). Genetic variance components and heritability of multiallelic heterozygosity under inbreeding. Heredity. 116:1-11.

Pereira, J.C.C. (2008). Melhoramento genético aplicado à produção animal. Editora FEPMVZ.

Rosa, A. N., Martins, E. N., Menezes, G. R. O., & Silva, L. O. C. (2013). Melhoramento genético aplicado em gado de corte. Embrapa.

Silva, M. H. M. A., Malhado, C. H. M., Kern, E. L., Daltro, D.S., Cobuci, J. A., & Carneiro, P. L. S. (2019). Inbreeding depression in Holstein cattle in Brazil. Revista Brasileira de zootecnia.48:e20170212.

Sørensen, A. C., Madsen, P., Sørensen, M. K., & Berg, P. (2006). Udder Health Shows Inbreeding Depression in Danish Holsteins. Journal of Dairy Science. 89: 4077-4082.

VanRaden, P. M., O'Connell, J. R., Wiggans, G. R., & Weigel, K. A. (2011). Genomic evaluations with many more genotypes. Genetics Selection Evolution.43: 10.

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science. 91: 4414-4423.

Walsh, B. & Lynch, M. (1998). Evolution and Selection of Quantitative Traits. Oxford University Press.

Wang, H., Misztal, I., & Legarra, A. (2014). Differences between genomic‐based and pedigree‐based relationships in a chicken population, as a function of quality control and pedigree links among individuals. Journal of Animal Breeding and Genetics. 131(6): 445-51.

Wright, S. (1922). Coefficients of inbreeding and relationship. The American Naturalist. 56:330-338.

Published

30/06/2022

How to Cite

DIJKINGA, F. J.; SOTOMAIOR, V. S.; SOTOMAIOR, C. S. Inbreeding and its effects on the Holstein breed. Research, Society and Development, [S. l.], v. 11, n. 8, p. e58411831288, 2022. DOI: 10.33448/rsd-v11i8.31288. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31288. Acesso em: 20 apr. 2024.

Issue

Section

Agrarian and Biological Sciences