Gasification biomass in supercritical water as hydrogen production technology

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.31296

Keywords:

Water; Supercritical; Hydrogen; Biomass; Gasification.

Abstract

In recent decades, the interest in using biomass for energy production has grown considerably. Besides recycling waste from agriculture and food, for example, bagasse from sugar cane, biomass energy avoids the increase of carbon dioxide in the atmosphere. The residual biomass can be used in various ways to generate energy. One and perhaps the most effective is the production of hydrogen. The study of hydrogen production from alternative sources has grown in recent years due to the need to use renewable sources and the technological development of fuel cells. Among several alternatives, gasification in supercritical water cannot be specific for a particular residue (or agricultural effluents in various processes). During gasification in supercritical water, or at temperatures and pressures greater than or equal to 374 °C and 22.1 MPa, respectively, are produced in much hydrogen (H2) and carbon dioxide (CO2). However, too high pressures and temperatures, the materials for construction and maintenance of the production plant deserve special attention, and high operating cost becomes the greatest obstacle to developing this technology. However, in addition to excellent efficiency, hydrogen in a fuel cell generates only water as a by-product, therefore replacing processes using fossil fuels with alternative processes that use a convenient and timely manner. The hydrogen generation technology in supercritical water meets this yearning, and new studies are being conducted to make it more viable.

References

Antal, M. J., Allen, S. G., Schulman, D., Xu, X., & Divilio, R. J. (2000). Biomass Gasification in Supercritical Water. Industrial & Engineering Chemistry Research, 39(11), 4040–4053. https://doi.org/10.1021/ie0003436

Arita, T., Nakahara, K., Nagami, K., & Kajimoto, O. (2003). Hydrogen generation from ethanol in supercritical water without catalyst. Tetrahedron Letters, 44(5), 1083–1086. https://doi.org/10.1016/S0040-4039(02)02704-1

Azadi, P., & Farnood, R. (2011). Review of heterogeneous catalysts for sub- and supercritical water gasification of biomass and wastes. International Journal of Hydrogen Energy, 36(16), 9529–9541. https://doi.org/10.1016/j.ijhydene.2011.05.081

Boukis, N., Diem, V., Habicht, W., & Dinjus, E. (2003). Methanol Reforming in Supercritical Water. Industrial & Engineering Chemistry Research, 42(4), 728–735. https://doi.org/10.1021/ie020557i

Brunner, G. (2009). Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. The Journal of Supercritical Fluids, 47(3), 373–381. https://doi.org/10.1016/j.supflu.2008.09.002

Chang, S., & Liu, Y. (2007). Degradation mechanism of 2,4,6-trinitrotoluene in supercritical water oxidation. Journal of Environmental Sciences (China), 19(12), 1430–1435. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18277645

Darr, J. A., & Poliakoff, M. (1999). New Directions in Inorganic and Metal-Organic Coordination Chemistry in Supercritical Fluids.

Demirbas, A. (2009a). Pyrolysis Mechanisms of Biomass Materials. Energy Sources Part A Recovery Utilization And Environmental Effects, 31(13), 1186–1193. https://doi.org/10.1080/15567030801952268

Demirbas, A. (2009b). Thermochemical Conversion Processes. In Biofuels (pp. 261–304). https://doi.org/10.1007/978-1-84882-011-1_6

DiLeo, G. J., & Savage, P. E. (2006). Catalysis during methanol gasification in supercritical water. The Journal of Supercritical Fluids, 39(2), 228–232. https://doi.org/10.1016/j.supflu.2006.01.004

Erkonak, H., Söğüt, O. Ö., & Akgün, M. (2008). Treatment of olive mill wastewater by supercritical water oxidation. The Journal of Supercritical Fluids, 46(2), 142–148. https://doi.org/10.1016/j.supflu.2008.04.006

Fang, Z., Minowa, T., Smith, R. L., Ogi, T., & Koziński, J. A. (2004). Liquefaction and Gasification of Cellulose with Na 2 CO 3 and Ni in Subcritical Water at 350 ° C. Industrial & Engineering Chemistry Research, 43(10), 2454–2463. https://doi.org/10.1021/ie034146t

Fang, Z., Smith Jr, R. L., Inomata, H., & Arai, K. (2000). Phase behavior and reaction of polyethylene in supercritical water at pressures up to 2.6 GPa and temperatures up to 670°C. The Journal of Supercritical Fluids, 16(3), 207–216. https://doi.org/10.1016/s0896-8446(99)00035-2

Ferreira-Pinto, L., de Araujo, P. C. C., Aranda Saldaña, M. D., Arce, P. F., & Cardozo-Filho, L. (2019). Experimental Data and Thermodynamics Modeling (PC-SAFT EoS) of the {CO 2 + Acetone + Pluronic F-127} System at High Pressures. Journal of Chemical & Engineering Data, 64(5), 2186–2192. https://doi.org/10.1021/acs.jced.8b01163

Ferreira-Pinto, L., Feirhrmann, A. C., Corazza, M. L., Fernandes-Machado, N. R. C., dos Reis Coimbra, J. S., Saldaña, M. D. A., & Cardozo-Filho, L. (2015). Hydrogen production and TOC reduction from gasification of lactose by supercritical water. International Journal of Hydrogen Energy, 40(36), 12162–12168. https://doi.org/10.1016/j.ijhydene.2015.07.092

Ferreira-Pinto, L., Tavares, C. R. G., de Souza, T. L., Feihrmann, A. C., Coimbra, J., Vedoy, D. R. L., & Cardozo-Filho, L. (2017). Supercritical water oxidation of lactose. The Canadian Journal of Chemical Engineering, 95(5), 827–831. https://doi.org/10.1002/cjce.22772

Fujii, T., Hayashi, R., Kawasaki, S., Suzuki, A., & Oshima, Y. (2011). Water density effects on methanol oxidation in supercritical water at high pressure up to 100MPa. The Journal of Supercritical Fluids, 58(1), 142–149. https://doi.org/10.1016/j.supflu.2011.04.004

García-Jarana, M. B., Sánchez-Oneto, J., Portela, J. R., Nebot Sanz, E., & Martínez de la Ossa, E. J. (2008). Supercritical water gasification of industrial organic wastes. The Journal of Supercritical Fluids, 46(3), 329–334. https://doi.org/10.1016/j.supflu.2008.03.002

García Jarana, M. B., Sánchez-Oneto, J., Portela, J. R., Nebot Sanz, E., & Martínez de la Ossa, E. J. (2008). Supercritical water gasification of industrial organic wastes. The Journal of Supercritical Fluids, 46(3), 329–334. https://doi.org/10.1016/j.supflu.2008.03.002

Gosselink, R. J. A., Teunissen, W., van Dam, J. E. G., de Jong, E., Gellerstedt, G., Scott, E. L., & Sanders, J. P. M. (2012). Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresource Technology, 106, 173–177. https://doi.org/10.1016/j.biortech.2011.11.121

Guo, Y., Wang, S., Wang, Y., Zhang, J., Xu, D., & Gong, Y. (2012). Gasification of two and three-components mixture in supercritical water: Influence of NaOH and initial reactants of acetic acid and phenol. International Journal of Hydrogen Energy, 37(3), 2278–2286. https://doi.org/10.1016/j.ijhydene.2011.10.074

Heikkinen, J. ., Hordijk, J. ., de Jong, W., & Spliethoff, H. (2004). Thermogravimetry as a tool to classify waste components to be used for energy generation. Journal of Analytical and Applied Pyrolysis, 71(2), 883–900. https://doi.org/10.1016/j.jaap.2003.12.001

Holgate, H. R., Meyer, J. C., & Tester, J. W. (1995). Glucose hydrolysis and oxidation in supercritical water. AIChE Journal, 41(3), 637–648. https://doi.org/10.1002/aic.690410320

Huang, S. H., & Radosz, M. (1990). Equation of state for small, large, polydisperse, and associating molecules. Industrial & Engineering Chemistry Research, 29(11), 2284–2294. https://doi.org/10.1021/ie00107a014

Japas, M. L., & Franck, E. U. (1985). High Pressure Phase Equilibria and PVT-Data. of the Water-Nitrogen System to 673 K and 250 MPa. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 89(7), 793–800. https://doi.org/10.1002/bbpc.19850890714

Kabyemela, B. M., Adschiri, T., Malaluan, R. M., & Arai, K. (1997). Kinetics of Glucose Epimerization and Decomposition in Subcritical and Supercritical Water. Industrial & Engineering Chemistry Research, 36(5), 1552–1558. https://doi.org/10.1021/ie960250h

Kritzer, P. (2004). Corrosion in high-temperature and supercritical water and aqueous solutions: a review. The Journal of Supercritical Fluids, 29(1–2), 1–29. https://doi.org/10.1016/S0896-8446(03)00031-7

Kruse, A, & Gawlik, A. (2003). Biomass Conversion in Water at 330−410 °C and 30−50 MPa. Identification of Key Compounds for Indicating Different Chemical Reaction Pathways. Industrial & Engineering Chemistry Research, 42(2), 267–279. https://doi.org/10.1021/ie0202773

Kruse, Andrea. (2010). Erratum: Supercritical water gasification. Andrea Kruse. Biofuels, Bioproducts and Biorefining , 2009; 2:415-437. Biofuels, Bioproducts and Biorefining, 4(2), 241–241. https://doi.org/10.1002/bbb.195

Lee, I.-G., & Ihm, S.-K. (2009). Catalytic Gasification of Glucose over Ni/Activated Charcoal in Supercritical Water. Industrial & Engineering Chemistry Research, 48(3), 1435–1442. https://doi.org/10.1021/ie8012456

Lee, I.-G., Kim, M.-S., & Ihm, S.-K. (2002). Gasification of Glucose in Supercritical Water. Industrial & Engineering Chemistry Research, 41(5), 1182–1188. https://doi.org/10.1021/ie010066i

Marrone, P. A., & Hong, G. T. (2009). Corrosion control methods in supercritical water oxidation and gasification processes. The Journal of Supercritical Fluids, 51(2), 83–103. https://doi.org/10.1016/j.supflu.2009.08.001

Matsumura, Y, Minowa, T., Potic, B., Kersten, S., Prins, W., Vanswaaij, W., … Kruse, A. (2005). Biomass gasification in near- and super-critical water: Status and prospects. Biomass and Bioenergy, 29(4), 269–292. https://doi.org/10.1016/j.biombioe.2005.04.006

Matsumura, Y, Sasaki, M., Okuda, K., Takami, S., Ohara, S., Umetsu, M., & Adschiri, T. (2006). SUPERCRITICAL WATER TREATMENT OF BIOMASS FOR ENERGY AND MATERIAL RECOVERY. Combustion Science and Technology, 178(1–3), 509–536. https://doi.org/10.1080/00102200500290815

Matsumura, Yukihiko. (2002). Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan. Energy Conversion and Management, 43(9–12), 1301–1310. https://doi.org/10.1016/S0196-8904(02)00016-X

McHugh, M., & Krukonis, V. (2013). Supercritical Fluid Extraction:Principles and Practice. Retrieved from https://www.elsevier.com/books/supercritical-fluid-extraction/brenner/978-0-08-051817-6

Minowa, T., & Fang, Z. (1998). Hydrogen Production from Cellulose in Hot Compressed Water Using Reduced Nickel Catalst: Product Distribution at Different Reaction Temperatures. Journal of Chemical Engineering of Japan, 31(3), 488–491. Retrieved from http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0032094467&partnerID=40&rel=R7.0.0

Nikolai, P., Rabiyat, B., Aslan, A., & Ilmutdin, A. (2019). Supercritical CO2: Properties and Technological Applications - A Review. Journal of Thermal Science, 28(3), 394–430. https://doi.org/10.1007/s11630-019-1118-4

Osada, M., Sato, O., Watanabe, M., Arai, K., & Shirai, M. (2006). Water Density Effect on Lignin Gasification over Supported Noble Metal Catalysts in Supercritical Water. Energy & Fuels, 20(3), 930–935. https://doi.org/10.1021/ef050398q

Osada, M., Sato, T., Watanabe, M., Adschiri, T., & Arai, K. (2004). Low-Temperature Catalytic Gasification of Lignin and Cellulose with a Ruthenium Catalyst in Supercritical Water. Energy & Fuels, 18(2), 327–333. https://doi.org/10.1021/ef034026y

Peterson, A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr., M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy & Environmental Science, 1(1), 32. https://doi.org/10.1039/b810100k

Rabenau, V. A. (1985). Die Rolle der Hydrothermalsynthese in der praparativen Chemie. System, 9(1983), 1017–1032. https://doi.org/10.1002/ange.19850971205

Reed, T. B. (1985). Principles and Technology of Biomass Gasification. In Advances in Solar Energy (pp. 125–174). https://doi.org/10.1007/978-1-4613-9951-3_3

Resende, F. L. P., & Savage, P. E. (2009). Expanded and Updated Results for Supercritical Water Gasification of Cellulose and Lignin in Metal-Free Reactors. Energy & Fuels, 23(12), 6213–6221. https://doi.org/10.1021/ef9007278

Resende, F. L. P., & Savage, P. E. (2010). Kinetic model for noncatalytic supercritical water gasification of cellulose and lignin. AIChE Journal, 56(9), 2412–2420. https://doi.org/10.1002/aic.12165

Sasaki, M., Kabyemela, B., Malaluan, R., Hirose, S., Takeda, N., Adschiri, T., & Arai, K. (1998). Cellulose hydrolysis in subcritical and supercritical water. The Journal of Supercritical Fluids, 13(1–3), 261–268. https://doi.org/10.1016/S0896-8446(98)00060-6

Sato, T., Osada, M., Watanabe, M., Shirai, M., & Arai, K. (2003). Gasification of alkylphenols with supported noble metal catalysts in supercritical water. Industrial Engineering Chemistry Research, 42(19), 4277–4282. https://doi.org/10.1021/ie030261s

Savage, P. E. (1999). Organic Chemical Reactions in Supercritical Water. Chemical Reviews, 99(2), 603–622. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11848994

Scandelai, A. P. J., Cardozo Filho, L., Martins, D. C. C., Freitas, T. K. F. de S., Garcia, J. C., & Tavares, C. R. G. (2018). Combined processes of ozonation and supercritical water oxidation for landfill leachate degradation. Waste Management, 77, 466–476. https://doi.org/10.1016/j.wasman.2018.04.031

Scandelai, A. P. J., Zotesso, J. P., Jegatheesan, V., Cardozo-Filho, L., & Tavares, C. R. G. (2020). Intensification of supercritical water oxidation (ScWO) process for landfill leachate treatment through ion exchange with zeolite. Waste Management, 101, 259–267. https://doi.org/10.1016/j.wasman.2019.10.005

Schmieder, H., Abeln, J., Boukis, N., Dinjus, E., Kruse, A., Kluth, M., … Schacht, M. (2000). Hydrothermal gasification of biomass and organic wastes. The Journal of Supercritical Fluids, 17(2), 145–153. https://doi.org/10.1016/S0896-8446(99)00051-0

Schwald, W., & Bobleter, O. (1989). Hydrothermolysis of Cellulose Under Static and Dynamic Conditions at High Temperatures. Journal of Carbohydrate Chemistry, 8(4), 565–578. https://doi.org/10.1080/07328308908048017

Seward, T. M., & Franck, E. U. (1981). The system hydrogen - water up to 440°C and 2500 bar pressure. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 85(1), 2–7. https://doi.org/10.1002/bbpc.19810850103

Shin, Y. H., Lee, H., Lee, Y.-H., Kim, J., Kim, J.-D., & Lee, Y.-W. (2009). Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation. Journal of Hazardous Materials, 167(1–3), 824–829. https://doi.org/10.1016/j.jhazmat.2009.01.062

Steeper, R. R., Rice, S. F., Kennedy, I. M., & Aiken, J. D. (1996). Kinetics Measurements of Methane Oxidation in Supercritical Water. The Journal of Physical Chemistry, 100(1), 184–189. https://doi.org/10.1021/jp951925h

Taylor, J. (2003). Hydrogen production in a compact supercritical water reformer. International Journal of Hydrogen Energy, 28(11), 1171–1178. https://doi.org/10.1016/S0360-3199(02)00291-4

Trombeta, N. de C., & Caixeta Filho, J. V. (2017). Potencial e Disponibilidade de Biomassa de Cana-de-açúcar na Região Centro-Sul do Brasil: indicadores agroindustriais. Revista de Economia e Sociologia Rural, 55(3), 479–496. https://doi.org/10.1590/1234-56781806-94790550304

van Bennekom, J. G., Venderbosch, R. H., Assink, D., & Heeres, H. J. (2011). Reforming of methanol and glycerol in supercritical water. The Journal of Supercritical Fluids, 58(1), 99–113. https://doi.org/10.1016/j.supflu.2011.05.005

Vera Pérez, I., Rogak, S., & Branion, R. (2004). Supercritical water oxidation of phenol and 2,4-dinitrophenol. The Journal of Supercritical Fluids, 30(1), 71–87. https://doi.org/10.1016/S0896-8446(03)00166-9

Veriansyah, B., Kim, J.-D., & Lee, J.-C. (2007). Destruction of chemical agent simulants in a supercritical water oxidation bench-scale reactor. Journal of Hazardous Materials, 147(1–2), 8–14. https://doi.org/10.1016/j.jhazmat.2006.12.040

Waldner, M. H., & Vogel, F. (2005). Renewable Production of Methane from Woody Biomass by Catalytic Hydrothermal Gasification. Industrial & Engineering Chemistry Research, 44(13), 4543–4551. https://doi.org/10.1021/ie050161h

Watanabe, M., Inomata, H., & Arai, K. (2002). Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water. Biomass and Bioenergy, 22(5), 405–410. https://doi.org/10.1016/S0961-9534(02)00017-X

Watanabe, M., Inomata, H., Osada, M., Sato, T., & Adschiri, T. (2003). Catalytic effects of NaOH and ZrO 2 for partial oxidative gasification of n-hexadecane and lignin in supercritical waterq. 82, 545–552.

Xu, X., Matsumura, Y., Stenberg, J., & Antal, M. J. (1996). Carbon-Catalyzed Gasification of Organic Feedstocks in Supercritical Water †. Industrial & Engineering Chemistry Research, 35(8), 2522–2530. https://doi.org/10.1021/ie950672b

Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45(5), 651–671. https://doi.org/10.1016/S0196-8904(03)00177-8

Yan, B., Wei, C., Hu, C., Xie, C., & Wu, J. (2007). Hydrogen generation from polyvinyl alcohol-contaminated wastewater by a process of supercritical water gasification. Journal of Environmental Sciences (China), 19(12), 1424–1429. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18277644

Yoshida, Y. (2003). Comprehensive comparison of efficiency and CO2 emissions between biomass energy conversion technologies—position of supercritical water gasification in biomass technologies. Biomass and Bioenergy, 25(3), 257–272. https://doi.org/10.1016/S0961-9534(03)00016-3

Youssef, E. a., Elbeshbishy, E., Hafez, H., Nakhla, G., & Charpentier, P. (2010). Sequential supercritical water gasification and partial oxidation of hog manure. International Journal of Hydrogen Energy, 35(21), 11756–11767. https://doi.org/10.1016/j.ijhydene.2010.08.097

Yu, D., Aihara, M., & Antal, M. J. (1993). Hydrogen Production by Steam Reforming Glucose in Supercritical Water? (August 1982), 574–577.

Published

11/07/2022

How to Cite

BARROS, T. V. .; LOPEZ, G. de S. .; SANTOS, R. J. dos .; PARIZI, M. P. S. .; CARDOZO-FILHO, L.; FERREIRA-PINTO, L. Gasification biomass in supercritical water as hydrogen production technology. Research, Society and Development, [S. l.], v. 11, n. 9, p. e32511931296 , 2022. DOI: 10.33448/rsd-v11i9.31296. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31296. Acesso em: 20 nov. 2024.

Issue

Section

Review Article