Edible films and coatings: concept, application, and use in post-harvested fruits and vegetables
DOI:
https://doi.org/10.33448/rsd-v11i9.31418Keywords:
Biopolymers; Biodegradable packaging; Food preservation.Abstract
Until recently, taste and appearance were the most important attributes of fresh fruits and other vegetables, but nowadays, consumers are more concerned about food safety and nutritional values, demanding to use less chemicals in fruits and vegetables. In this context, much attention has been given to the search for natural substances capable of acting as antimicrobials and antioxidants, being an alternative to the products used in the maintenance of food quality.
This increased interest has intensified due to concerns about the limited natural resources of the fossil fuel reserve and the environmental impact caused by the use of non-biodegradable plastic-based packaging materials. The demand for renewable and biodegradable products has become an important strategy in the effort to reduce the polluting impact of packaging on the environment. To overcome this problem, an edible coating approach can be used where biopolymers emerge as possible replacements for petroleum-based packaging materials. Known as “green plastics” or bioplastics, they are made from biodegradable polymers such as starches, cellulose, and sodium alginate, among others, with numerous studies being conducted to investigate the ability of edible toppings to preserve the quality and extend the shelf life of fresh fruits and vegetables. This is possible due to their acting by regulating the metabolic activities of the fruits and the addition of active ingredients that interact with the product.
References
Acevedo-Fani, A., Soliva-Fortuny, R., & Martín-Belloso, O. (2017). Nanoemulsions as edible coatings. Current Opinion in Food Science, 15, 43–49. https://doi.org/10.1016/J.COFS.2017.06.002
Alcântara, L. O., Martins, M. E. de O., Sousa, J. R., Cerqueira, M. Â., Silva, A. L. C., Souza Filho, M. de S. M., & Souza, B. W. S. (2019). Wettability of edible coatings on Nile tilapia fillets (Oreochromis niloticus). Journal of Food Engineering, 247, 152–159. https://doi.org/10.1016/J.JFOODENG.2018.11.026
Almeida, C. L. de. (2018). Preparo e caracterização de esponjas à base de quitosana e policaprolactona (PCL). UFPB.
Andres Galindez, Dazaa, L. D., Homez-Jara, A., Eim, V. S., & Váquiro, H. A. (2019). Characterization of ulluco starch and its potential for use in edible films prepared at low drying temperature. Carbohydrate Polymers, 215, 143–150. https://doi.org/10.1016/J.CARBPOL.2019.03.074
Arcan, İ., Boyacı, D., & Yemenicioğlu, A. (2017). The Use of Zein and Its Edible Films for the Development of Food Packaging Materials. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21126-8
Aristizabal-Gil, M. V., Santiago-Toro, S., Sanchez, L. T., Pinzon, M. I., Gutierrez, J. A., & Villa, C. C. (2019). ZnO and ZnO/CaO nanoparticles in alginate films. Synthesis, mechanical characterization, barrier properties and release kinetics. Lwt, 112(May), 108217. https://doi.org/10.1016/j.lwt.2019.05.115
Arnon-Rips, H., Porat, R., & Poverenov, E. (2019). Enhancement of agricultural produce quality and storability using citral-based edible coatings; the valuable effect of nano-emulsification in a solid-state delivery on fresh-cut melons model. Food Chemistry, 277, 205–212. https://doi.org/10.1016/J.FOODCHEM.2018.10.117
Arnon-Rips, H., & Poverenov, E. (2018). Improving food products’ quality and storability by using Layer by Layer edible coatings. Trends in Food Science & Technology, 75, 81–92. https://doi.org/10.1016/J.TIFS.2018.03.003
Arnon, H., Zaitsev, Y., Porat, R., & Poverenov, E. (2014). Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biology and Technology, 87, 21–26. https://doi.org/10.1016/J.POSTHARVBIO.2013.08.007
Arquelau, P. B. de F., Silva, V. D. M., Garcia, M. A. V. T., Araújo, R. L. B. de, & Fante, C. A. (2019). Characterization of edible coatings based on ripe “Prata” banana peel flour. Food Hydrocolloids, 89, 570–578. https://doi.org/10.1016/J.FOODHYD.2018.11.029
Arroyo, B. J., Bezerra, A. C., Oliveira, L. L., Arroyo, S. J., Melo, E. A. de, & Santos, A. M. P. (2020). Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chemistry, 309(August 2018), 125566. https://doi.org/10.1016/j.foodchem.2019.125566
Bagheri, V., Ghanbarzadeh, B., Ayaseh, A., Ostadrahimi, A., Ehsani, A., Alizadeh-Sani, M., & Adun, P. A. (2019). The optimization of physico-mechanical properties of bionanocomposite films based on gluten/ carboxymethyl cellulose/ cellulose nanofiber using response surface methodology. Polymer Testing, 78, 105989. https://doi.org/10.1016/J.POLYMERTESTING.2019.105989
Basiak, E., Linke, M., Debeaufort, F., Lenart, A., & Geyer, M. (2019). Dynamic behaviour of starch-based coatings on fruit surfaces. Postharvest Biology and Technology, 147, 166–173. https://doi.org/10.1016/J.POSTHARVBIO.2018.09.020
Bosquez-Molina, E., Guerrero-Legarreta, I., & Vernon-Carter, E. J. (2003). Moisture barrier properties and morphology of mesquite gum–candelilla wax based edible emulsion coatings. Food Research International, 36(9–10), 885–893. https://doi.org/10.1016/S0963-9969(03)00097-8
Boyacı, D., Iorio, G., Sozbilen, G. S., Alkan, D., Trabattoni, S., Pucillo, F., … Yemenicioğlu, A. (2019). Development of flexible antimicrobial zein coatings with essential oils for the inhibition of critical pathogens on the surface of whole fruits: Test of coatings on inoculated melons. Food Packaging and Shelf Life, 20(October 2018), 100316. https://doi.org/10.1016/j.fpsl.2019.100316
Cerqueira, M. Â. P. R., Pereira, R. N. C., Ramos, Ó. L. da S., Teixeira, J. A. C., & Vicente, A. A. (2016). Edible food packaging : materials and processing technologies. New York.
Chen, H., Sun, Z., & Yang, H. (2019). Effect of carnauba wax-based coating containing glycerol monolaurate on the quality maintenance and shelf-life of Indian jujube (Zizyphus mauritiana Lamk.) fruit during storage. Scientia Horticulturae, 244, 157–164. https://doi.org/10.1016/J.SCIENTA.2018.09.039
Chevalier, E., Chaabani, A., Assezat, G., Prochazka, F., & Oulahal, N. (2018). Casein/wax blend extrusion for production of edible films as carriers of potassium sorbate—A comparative study of waxes and potassium sorbate effect. Food Packaging and Shelf Life, 16, 41–50. https://doi.org/10.1016/J.FPSL.2018.01.005
Chuayjuljit, S., Su-uthai, S., & Charuchinda, S. (2010). Poly(vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study. Waste Management & Research : The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 28(2), 109–117. https://doi.org/10.1177/0734242X09339324
Coelho, C. C. de S., Fonseca, M. J. de O., Soares, A. G., Campos, R. D. S., & Freitas-Silva, O. (2017). Aplicação De Revestimento Filmogênico À Base De Amido De Mandioca E De Óleo De Cravo-Da-Índia Na Conservação Pós-Colheita De Goiaba ‘Pedro Sato.’ Revista Engenharia Na Agricultura - Reveng, 25(6), 479–490. https://doi.org/10.13083/reveng.v25i6.723
Comaposada, J., Gou, P., Marcos, B., & Arnau, J. (2015). Physical properties of sodium alginate solutions and edible wet calcium alginate coatings. LWT - Food Science and Technology, 64(1), 212–219. https://doi.org/10.1016/J.LWT.2015.05.043
Costa, M. J., Maciel, L. C., Teixeira, J. A., Vicente, A. A., & Cerqueira, M. A. (2018). Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Research International, 107, 84–92. https://doi.org/10.1016/J.FOODRES.2018.02.013
da Silva, I. J., de Veredas, V., dos Santos, M. A. G., Santana, C. C., Carpes, M. J. S., & Correia, C. R. D. (2006). Simulated moving bed chromatography in the production of enantiomerically pure or enriched compounds in large scale. Quimica Nova, 29(5), 1027–1037. https://doi.org/10.1590/s0100-40422006000500024
Daniela Cardozo Bagatini. (2017). Extração de gelatina de peles de pescada-olhuda (Cynoscion guatucupa) para aplicação em embalagens biodegradáveis para alimentos.
de Freitas, C. A. S., de Sousa, P. H. M., Soares, D. J., da Silva, J. Y. G., Benjamin, S. R., & Guedes, M. I. F. (2019). Carnauba wax uses in food – A review. Food Chemistry, 291, 38–48. https://doi.org/10.1016/J.FOODCHEM.2019.03.133
Dehghani, S., Hosseini, S. V., & Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505–513. https://doi.org/10.1016/J.FOODCHEM.2017.07.034
Ebrahimi, B., Mohammadi, R., Rouhi, M., Mortazavian, A. M., Shojaee-Aliabadi, S., & Koushki, M. R. (2018). Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT, 87, 54–60. https://doi.org/10.1016/J.LWT.2017.08.066
Elanthikkal, S., Gopalakrishnapanicker, U., Varghese, S., & Guthrie, J. T. (2010). Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydrate Polymers, 80(3), 852–859. https://doi.org/10.1016/j.carbpol.2009.12.043
Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. Materials Science and Engineering: C, 33(4), 1819–1841. https://doi.org/10.1016/J.MSEC.2013.01.010
Eom, H., Chang, Y., Lee, E., Choi, H.-D., & Han, J. (2018). Development of a starch/gum-based edible coating for rice cakes to retard retrogradation during storage. LWT, 97, 516–522. https://doi.org/10.1016/J.LWT.2018.07.044
Fonseca, M. J. de O., Soares, A. G., Barboza, H. T. G., Carvalho, M. A. G., & Júnior, A. C. V. N. (2016). Uso de Revestimento Comestível para Extensão da Vida Útil da Goiaba ‘Pedro Sato.’ Engenharia Na Agricultura, pp. 101–110. https://doi.org/10.13083/1414-3984/reveng.v24n2p101-110
Fratari, S. C., Oliveira, A. P. de, Faria, R. A. P. G. de, & Villa, R. D. (2021). REVESTIMENTOS COMESTÍVEIS PARA CONSERVAÇÃO PÓS COLHEITA DE BANANA: UMA REVISÃO. In Avanços em Ciência e Tecnologia de Alimentos - Volume 4 (Vol. 4, pp. 444–467). Editora Científica Digital. https://doi.org/10.37885/210203091
Gol, B., & Rao, T. V. R. (2014). Influence of zein and gelatin coatings on the postharvest quality and shelf life extension of mango ( Mangifera indica L.). Fruits, 69(2), 101–115. https://doi.org/10.1051/fruits/2014002
Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. E., & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, 25(8), 1813–1827. https://doi.org/10.1016/J.FOODHYD.2011.02.007
Hajji, S., Younes, I., Affes, S., Boufi, S., & Nasri, M. (2018). Optimization of the formulation of chitosan edible coatings supplemented with carotenoproteins and their use for extending strawberries postharvest life. Food Hydrocolloids, 83, 375–392. https://doi.org/10.1016/J.FOODHYD.2018.05.013
Hamedi, H., Kargozari, M., Shotorbani, P. M., Mogadam, N. B., & Fahimdanesh, M. (2017). A novel bioactive edible coating based on sodium alginate and galbanum gum incorporated with essential oil of Ziziphora persica: The antioxidant and antimicrobial activity, and application in food model. Food Hydrocolloids, 72, 35–46. https://doi.org/10.1016/J.FOODHYD.2017.05.014
Han, J. H. (2014). Edible Films and Coatings: A Review. Innovations in Food Packaging. Academic Press. https://doi.org/10.1016/B978-0-12-394601-0.00009-6
Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107. https://doi.org/10.1016/J.IJBIOMAC.2017.11.097
Huq, T., Salmieri, S., Khan, A., Khan, R. A., Le Tien, C., Riedl, B., … Lacroix, M. (2012). Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydrate Polymers, 90(4), 1757–1763. https://doi.org/10.1016/j.carbpol.2012.07.065
Jiao, W., Shu, C., Li, X., Cao, J., Fan, X., & Jiang, W. (2019). Preparation of a chitosan-chlorogenic acid conjugate and its application as edible coating in postharvest preservation of peach fruit. Postharvest Biology and Technology, 154, 129–136. https://doi.org/10.1016/J.POSTHARVBIO.2019.05.003
Jorge, T. de S., Soares, A. G., Fonseca, M. J. de O., Barboza, H. T. G., Junior, M. F., Oliveira, A. H., … Barbosa, W. J. (2013). Evaluation of Packaging and Edible Coating on Postharvest Strawberry. 7th International Postharvest Symposium, (November), 533–538. https://doi.org/10.17660/ActaHortic.2013.1012.71
K.S., J., Jose, J., Li, T., Thomas, M., Shankregowda, A. M., Sreekumaran, S., … Thomas, S. (2020). Application of novel zinc oxide reinforced xanthan gum hybrid system for edible coatings. International Journal of Biological Macromolecules, 151, 806–813. https://doi.org/10.1016/J.IJBIOMAC.2020.02.085
Koushesh Saba, M., & Amini, R. (2017). Nano-ZnO/carboxymethyl cellulose-based active coating impact on ready-to-use pomegranate during cold storage. Food Chemistry, 232, 721–726. https://doi.org/10.1016/J.FOODCHEM.2017.04.076
Lan, Y. (2019). Waxes. Encyclopedia of Food Chemistry, 312–316. https://doi.org/10.1016/B978-0-08-100596-5.22344-5
Li, J., Sun, Q., Sun, Y., Chen, B., Wu, X., & Le, T. (2019). Improvement of banana postharvest quality using a novel soybean protein isolate/cinnamaldehyde/zinc oxide bionanocomposite coating strategy. Scientia Horticulturae, 258, 1–7. https://doi.org/10.1016/J.SCIENTA.2019.108786
Li, X. yu, Du, X. long, Liu, Y., Tong, L. jing, Wang, Q., & Li, J. long. (2019). Rhubarb extract incorporated into an alginate-based edible coating for peach preservation. Scientia Horticulturae, 257(July), 108685. https://doi.org/10.1016/j.scienta.2019.108685
Liu, C., Huang, J., Zheng, X., Liu, S., Lu, K., Tang, K., & Liu, J. (2020). Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packaging and Shelf Life, 24(November 2019), 100485. https://doi.org/10.1016/j.fpsl.2020.100485
Low, L. E., Siva, S. P., Ho, Y. K., Chan, E. S., & Tey, B. T. (2020). Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Advances in Colloid and Interface Science, 277, 102117. https://doi.org/10.1016/j.cis.2020.102117
Ma, X., Chang, P. R., & Yu, J. (2008). Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers, 72(3), 369–375. https://doi.org/10.1016/j.carbpol.2007.09.002
Mannucci, A., Serra, A., Remorini, D., Castagna, A., Mele, M., Scartazza, A., & Ranieri, A. (2017). Aroma profile of Fuji apples treated with gelatin edible coating during their storage. LWT - Food Science and Technology, 85, 28–36. https://doi.org/10.1016/j.lwt.2017.06.061
Md Nor, S., & Ding, P. (2020). Trends and advances in edible biopolymer coating for tropical fruit: A review. Food Research International, 134, 109208. https://doi.org/10.1016/J.FOODRES.2020.109208
Mirzaei-Mohkam, A., Garavand, F., Dehnad, D., Keramat, J., & Nasirpour, A. (2019). Optimisation, antioxidant attributes, stability and release behaviour of carboxymethyl cellulose films incorporated with nanoencapsulated vitamin E. Progress in Organic Coatings, 134, 333–341. https://doi.org/10.1016/J.PORGCOAT.2019.05.026
Nallan Chakravartula, S. S., Cevoli, C., Balestra, F., Fabbri, A., & Dalla Rosa, M. (2019). Evaluation of drying of edible coating on bread using NIR spectroscopy. Journal of Food Engineering, 240, 29–37. https://doi.org/10.1016/J.JFOODENG.2018.07.009
Neves Junior, A. C. V., Coneglian, R. C. C., Soares, A. G., Freitas, D. de G. C., Fonseca, M. J. O., & Barboza, H. T. G. (2013). Evaluation of Refrigerated Storage of ’ Mikado ’ Fresh Persimmon Using Edible Coatings Evaluation of Refrigerated Storage of ‘ Mikado ’ Fresh Persimmon Using Edible Coatings. Acta Horticulturae, (November), 1517–1522. https://doi.org/10.17660/ActaHortic.2013.1012.206
Neves Junior, A. C. V., Coneglian, R. C. C., Soares, A. G., Freitas, D. de G. C., Fonseca, M. J. O., Barreira, F. R., & Miranda, A. F. M. de. (2012). Physical and sensory characterization of edible coatings applied to minimally processed persimmon Physical and Sensory Characterization of Edible Coatings Applied to Minimally Processed Persimmon. Acta Horticulturae, (December 2015), 537–542. https://doi.org/10.17660/ActaHortic.2012.934.71
Nourbakhsh, S., Talebian, A., & Faramarzi, S. (2017). Preparation and Characterization of Gelatin/ZnO Nano-Composite Film. Materials Today: Proceedings, 4(7), 7038–7043. https://doi.org/10.1016/J.MATPR.2017.07.035
Nouri Ala, M. A., & Shahbazi, Y. (2019). The effects of novel bioactive carboxymethyl cellulose coatings on food-borne pathogenic bacteria and shelf life extension of fresh and sauced chicken breast fillets. LWT, 111, 602–611. https://doi.org/10.1016/J.LWT.2019.05.092
Ortiz-Duarte, G., Pérez-Cabrera, L. E., Artés-Hernández, F., & Martínez-Hernández, G. B. (2019). Ag-chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon. Postharvest Biology and Technology, 147, 174–184. https://doi.org/10.1016/J.POSTHARVBIO.2018.09.021
Pellá, M. C. G., Silva, O. A., Pellá, M. G., Beneton, A. G., Caetano, J., Simões, M. R., & Dragunski, D. C. (2020). Effect of gelatin and casein additions on starch edible biodegradable films for fruit surface coating. Food Chemistry, 309(March 2019), 125764. https://doi.org/10.1016/j.foodchem.2019.125764
Rangel-Marrón, M., Mani-López, E., Palou, E., & López-Malo, A. (2019). Effects of alginate-glycerol-citric acid concentrations on selected physical, mechanical, and barrier properties of papaya puree-based edible films and coatings, as evaluated by response surface methodology. LWT, 101, 83–91. https://doi.org/10.1016/J.LWT.2018.11.005
Rico, M., Rodríguez-Llamazares, S., Barral, L., Bouza, R., & Montero, B. (2016). Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose. Carbohydrate Polymers, 149, 83–93. https://doi.org/10.1016/j.carbpol.2016.04.087
Ruan, C., Zhang, Y., Sun, Y., Gao, X., Xiong, G., & Liang, J. (2019). Effect of sodium alginate and carboxymethyl cellulose edible coating with epigallocatechin gallate on quality and shelf life of fresh pork. International Journal of Biological Macromolecules, 141, 178–184. https://doi.org/10.1016/j.ijbiomac.2019.08.247
Sánchez-Ortega, I., García-Almendárez, B. E., Santos-López, E. M., Reyes-González, L. R., & Regalado, C. (2016). Characterization and antimicrobial effect of starch-based edible coating suspensions. Food Hydrocolloids, 52, 906–913. https://doi.org/10.1016/J.FOODHYD.2015.09.004
Sani, I. K., Pirsa, S., & Tağı, Ş. (2019). Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polymer Testing, 79, 106004. https://doi.org/10.1016/J.POLYMERTESTING.2019.106004
Saral Sarojini, K., Indumathi, M. P., & Rajarajeswari, G. R. (2019). Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. International Journal of Biological Macromolecules, 124, 163–174. https://doi.org/10.1016/j.ijbiomac.2018.11.195
Saucedo-Pompa, S., Rojas-Molina, R., Aguilera-Carbó, A. F., Saenz-Galindo, A., Garza, H. de La, Jasso-Cantú, D., & Aguilar, C. N. (2009). Edible film based on candelilla wax to improve the shelf life and quality of avocado. Food Research International, 42(4), 511–515. https://doi.org/10.1016/J.FOODRES.2009.02.017
Soradech, S., Nunthanid, J., Limmatvapirat, S., & Luangtana-anan, M. (2017). Utilization of shellac and gelatin composite film for coating to extend the shelf life of banana. Food Control, 73, 1310–1317. https://doi.org/10.1016/j.foodcont.2016.10.059
Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., & Vicente, A. (2010). The Use of Electric Fields for Edible Coatings and Films Development and Production: A Review. Food Engineering Reviews, 2(4), 244–255. https://doi.org/10.1007/s12393-010-9029-x
Spasojević, L., Katona, J., Bučko, S., Savić, S. M., Petrović, L., Milinković Budinčić, J., … Sharipova, A. (2019). Edible water barrier films prepared from aqueous dispersions of zein nanoparticles. LWT, 109, 350–358. https://doi.org/10.1016/J.LWT.2019.04.038
Stockler, I. (2019). Principais leis ambientais. Retrieved June 22, 2022, from https://iusnatura.com.br/principais-leis-ambientais/
Tahir, H. E., Xiaobo, Z., Mahunu, G. K., Arslan, M., Abdalhai, M., & Zhihua, L. (2019). Recent developments in gum edible coating applications for fruits and vegetables preservation: A review. Carbohydrate Polymers, 224(July), 115141. https://doi.org/10.1016/j.carbpol.2019.115141
Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2016). Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, 137, 360–374. https://doi.org/10.1016/J.CARBPOL.2015.10.074
Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079–1089. https://doi.org/10.1016/J.IJBIOMAC.2019.03.190
Theóphilo Galvão, A. M. M., de Oliveira Araújo, A. W., Carneiro, S. V., Zambelli, R. A., & do Socorro Rocha Bastos, M. (2018). Coating development with modified starch and tomato powder for application in frozen dough. Food Packaging and Shelf Life, 16, 194–203. https://doi.org/10.1016/J.FPSL.2018.04.003
Tsai, M. J., & Weng, Y. M. (2019). Novel edible composite films fabricated with whey protein isolate and zein: Preparation and physicochemical property evaluation. Lwt, 101(August 2018), 567–574. https://doi.org/10.1016/j.lwt.2018.11.068
Valencia-Chamorro, S. A., Palou, L., Delŕio, M. A., & Pérez-Gago, M. B. (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 51(9), 872–900. https://doi.org/10.1080/10408398.2010.485705
Valizadeh, S., Naseri, M., Babaei, S., Hosseini, S. M. H., & Imani, A. (2019). Development of bioactive composite films from chitosan and carboxymethyl cellulose using glutaraldehyde, cinnamon essential oil and oleic acid. International Journal of Biological Macromolecules, 134, 604–612. https://doi.org/10.1016/J.IJBIOMAC.2019.05.071
Xu, Y., Chu, Y., Feng, X., Gao, C., Wu, D., Cheng, W., … Tang, X. (2020). Effects of zein stabilized clove essential oil Pickering emulsion on the structure and properties of chitosan-based edible films. International Journal of Biological Macromolecules, 156, 111–119. https://doi.org/10.1016/j.ijbiomac.2020.04.027
Yan, J., Luo, Z., Ban, Z., Lu, H., Li, D., Yang, D., … Li, L. (2019). The effect of the layer-by-layer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Biology and Technology, 147, 29–38. https://doi.org/10.1016/J.POSTHARVBIO.2018.09.002
Yeddes, W., Djebali, K., Aidi Wannes, W., Horchani-Naifer, K., Hammami, M., Younes, I., & Saidani Tounsi, M. (2020). Gelatin-chitosan-pectin films incorporated with rosemary essential oil: Optimized formulation using mixture design and response surface methodology. International Journal of Biological Macromolecules, 154, 92–103. https://doi.org/10.1016/j.ijbiomac.2020.03.092
Zhao, Y. (2019). Edible Coatings for Extending Shelf-Life of Fresh Produce During Postharvest Storage. Encyclopedia of Food Security and Sustainability, 506–510. https://doi.org/10.1016/B978-0-08-100596-5.22262-2
Zhu, Q., Li, Y., Li, S., & Wang, W. (2020). Fabrication and characterization of acid soluble collagen stabilized Pickering emulsions. Food Hydrocolloids, 106(December 2019), 105875. https://doi.org/10.1016/j.foodhyd.2020.105875
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Henriqueta Talita Guimarães Barboza; Antonio Gomes Soares; José Carlos Sá Ferreira; Otniel Freitas Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.