Wollastonite and tricalcium phosphate composites for bone regeneration
DOI:
https://doi.org/10.33448/rsd-v11i9.31662Keywords:
Biomaterials; Bone Regeneration; Calcium phosphates; Calcium silicate.Abstract
In recent decades, researchers in bone tissue bioengineering have focused on developing and improving bioceramics efficient in presenting physical-chemical characteristics similar to bone tissue, aiming to mimic cellular events and mechanisms involved in osteogenesis. Among the materials used, wollastonite (W) has stood out in recent years, mainly due to its bioactivity. Besides, tricalcium phosphate (TCP) is also used primarily due to its osteoinductivity and osteoconductivity. Given their ionic compositions and the physical-chemical properties of W and TCP, scientists have associated these two materials during the synthesis of bioceramics that unite the characteristics of each material into a single biomaterial, called composite. This design enables a variety of association that allows improvements in the biological behavior of these materials. Therefore, W/TCP composites have shown excellent performance, in vitro and in vivo, as they start to exhibit fundamental properties for bone regeneration. These characteristics indicate the use of these new biomaterials in future clinical applications, especially in cases of extensive bone losses, which remain a significant challenge for scientists and biomedical professionals. Nevertheless, despite the advances achieved, many questions must be clarified, and essential to comprehend the mechanisms involved in osteogenesis after implantation. Thus, this study aimed to contextualize the use of W/TCP composites for bone regeneration, to support further studies necessary to identify the biological behavior of these bioceramics and ensure use in clinical practice.
References
Ahn, S. H., Seo, D. S., Lee, J. K. (2015). Fabrication of dense β-wollastonite bioceramics by MgSiO3 addition. Journal of Ceramic Processing Research, 16(5), 548-554.
Almeida, R. S., Ribeiro, I. I. A., Silva, M. H. P., Rocha, D. N., Miguel, F. B., & Rosa, F. P. (2014). Avaliação da fase inicial do reparo ósseo após implantação de biomateriais. Revista de Ciências Médicas e Biológicas, 13(3) especial, 331-336.
Almeida, R. S., Prado da Silva, M. H., Rocha, D. N., Ribeiro, I. I. A., Barbosa Júnior, A. A., Miguel, F. B., & Rosa, F. P. (2020). Regeneração de defeito ósseo crítico após implantação de fosfato de cálcio bifásico (β-fosfato tricálcico/pirofosfato de cálcio) e vidro bioativo fosfatado. Cerâmica, 66, 119-125.
Al-Noaman, A., Rawlinson, S. C., & Hill, R. G. (2013). Bioactive glass-stoichimetric wollastonite glass alloys to reduce TEC of bioactive glass coatings for dental implants. Materials Letters, 94, 69-71.
Anjaneyulu, U., & Sasikumar, S. (2014). Bioactive nanocrystalline wollastonite synthesized by sol–gel combustion method by using eggshell waste as calcium source. Bulletin of Materials Science, 37(2), 207-212.
Barbosa, W. T., Almeida, K. V., Lima, G. G., Rodriguez, M. A., Fook, M. L., Carrodeguas, R. G., Silva Junior, V. A., Sousa Segundo, F. A., & Sá, M. (2020). Synthesis and in vivo evaluation of a scaffold containing wollastonite/β‐TCP for bone repair in a rabbit tibial defect model. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(3), 1107-1116.
Cao, W., & Hench, L. L. (1996). Bioactive materials. Ceramics international, 22(6), 493-507.
Carrodeguas, R. G., De Aza, A. H., Turrillas, X., Pena, P., & De Aza, S. (2008). New approach to the β→α polymorphic transformation in magnesium-substituted tricalcium phosphate and its practical implications. Journal of the American Ceramic Society, 91(4), 1281-1286.
Carrodeguas, R. G., & De Aza, P. N. (2011). Main contributions to bioceramics by Salvador De Aza.
Carrodeguas, R. G., & De Aza, S. (2011). α-Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta biomaterialia, 7(10), 3536-3546.
Carrodeguas, R. G., De Aza, A. H., Jimenez, J., De Aza, P. N., Pena, P., López-Bravo, A., & De Aza, S. (2008). Preparation and in vitro characterization of wollastonite doped tricalcium phosphate bioceramics. In Key Engineering Materials (Vol. 361, pp. 237-240). Trans Tech Publications Ltd.
Cho, J. S., Chung, C. P., & Rhee, S. H. (2011). Bioactivity and osteoconductivity of biphasic calcium phosphates. Bioceramics Development and Applications, 1.
De Aza, A. H., Velasquez, P., Alemany, M. I., Pena, P., & De Aza, P. N. (2007). In situ bone-like apatite formation from a Bioeutectic® ceramic in SBF dynamic flow. Journal of the American Ceramic Society, 90(4), 1200-1207.
De Aza, P. N., García-Bernal, D., Cragnolini, F., Velasquez, P., & Meseguer-Olmo, L. (2013). The effects of Ca2SiO4–Ca3(PO4)2 ceramics on adult human mesenchymal stem cell viability, adhesion, proliferation, differentiation and function. Materials Science and Engineering: C, 33(7), 4009-4020.
De Aza, P. N., Guitian, F., & De Aza, S. (1994). Bioactivity of wollastonite ceramics: in vitro evaluation. Scripta Metallurgica et Materialia, 31(8), 1001-1005.
De Aza, P. N., Guitian, F., & De Aza, S. (1997). Bioeutectic: a new ceramic material for human bone replacement. Biomaterials, 18(19), 1285-1291.
De Aza, P. N., Luklinska, Z. B., Martinez, A., Anseau, M. R., Guitian, F., & De Aza, S. (2000). Morphological and structural study of pseudowollastonite implants in bone. Journal of Microscopy, 197(1), 60-67.
Deng, Y., Jiang, C., Li, C., Li, T., Peng, M., Wang, J., & Dai, K. (2017). 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation. Scientific Reports, 7(1), 1-14.
Domingues, J. A. (2013) Influência dos "whiskers" de wollastonita em cimento de fosfato de cálcio no comportamento de células osteoblásticas (Mastering dissertation, Universidade Estadual de Campinas).
Dorozhkin, S. V. (2013). Calcium orthophosphate-based bioceramics. Materials, 6(9), 3840-3942.
Dziadek, M., Stodolak-Zych, E., & Cholewa-Kowalska, K. (2017). Biodegradable ceramic-polymer composites for biomedical applications: A review. Materials Science and Engineering: C, 71, 1175-1191.
Encinas-Romero, M. A., Peralta-Haley, J., Valenzuela-García, J. L., & Castillón-Barraza, F. F. (2013). Synthesis and structural characterization of hydroxyapatite-wollastonite biocomposites, produced by an alternative sol-gel route. Journal of Biomaterials and Nanobiotechnology, 4(04), 327.
Factori, I. M. (2009). Processamento e propriedades de compósitos de poliamida 6.6 reforçada com partículas de vidro reciclado (Doctoral dissertation, Universidade de São Paulo).
Fei, L., Wang, C., Xue, Y., Lin, K., Chang, J., & Sun, J. (2012). Osteogenic differentiation of osteoblasts induced by calcium silicate and calcium silicate/β‐tricalcium phosphate composite bioceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100(5), 1237-1244.
Fernandes, M. C. S. (2015). Scaffolds de óxido de titânio e biosilicato para aplicações médicas e odontológicas obtidos com o uso de partículas orgânicas (Doctoral dissertation, Universidade de São Carlos).
Fernandez-Yague, M. A., Abbah, S. A., McNamara, L., Zeugolis, D. I., Pandit, A., & Biggs, M. J. (2015). Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Advanced Drug Delivery Reviews, 84, 1-29.
Gandolfi, M. G., Ciapetti, G., Taddei, P., Perut, F., Tinti, A., Cardoso, M. V., Van Meerbeek, B., & Prati, C. (2010). Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation. Dental Materials, 26(10), 974-992.
Gandolfi, M. G., Iacono, F., Agee, K., Siboni, F., Tay, F., Pashley, D. H., & Prati, C. (2009). Setting time and expansion in different soaking media of experimental accelerated calcium-silicate cements and Pro Root MTA. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 108(6), e39-e45.
Gandolfi, M. G., Shah, S. N., Feng, R., Prati, C., & Akintoye, S. O. (2011). Biomimetic calcium-silicate cements support differentiation of human orofacial mesenchymal stem cells. Journal of Endodontics, 37(8), 1102-1108.
Ge, R., Xun, C., Yang, J., Jia, W., & Li, Y. (2019). In vivo therapeutic effect of wollastonite and hydroxyapatite on bone defect. Biomedical Materials, 14(6), 1-12.
Gomes, L. C., Di Lello, B. C., Campos, J. B., & Sampaio, M. (2012). Síntese e caracterização de fosfatos de cálcio a partir da casca de ovo de galinha. Cerâmica, 58(348), 448-452.
Goswami, J., Bhatnagar, N., Mohanty, S., & Ghosh, A. K. (2013). Processing and characterization of poly (lactic acid) based bioactive composites for biomedical scaffold application. Express Polymer Letters, 7(9).
Guastaldi, A. C., & Aparecida, A. H. (2010). Fosfatos de cálcio de interesse biológico: importância como biomateriais, propriedades e métodos de obtenção de recobrimentos. Química Nova, 33(6), 1352-1358.
Hench, L. L. (1991). Bioceramics: from concept to clinic. Journal of the American Ceramic Society, 74(7), 1487-1510.
Hench, L. L., Day, D. E., Höland, W., & Rheinberger, V. M. (2010). Glass and medicine. International Journal of Applied Glass Science, 1(1), 104-117.
Hesaraki, S., Safari, M., & Shokrgozar, M. A. (2009). Development of β‐tricalcium phosphate/sol‐gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91(1), 459-469.
Huang, M. H., Kao, C. T., Chen, Y. W., Hsu, T. T., Shieh, D. E., Huang, T. H., & Shie, M. Y. (2015). The synergistic effects of Chinese herb and injectable calcium silicate/β-tricalcium phosphate composite on an osteogenic accelerator in vitro. Journal of Materials Science: Materials in Medicine, 26(4), 1-12.
Kamboj, N., Kazantseva, J., Rahmani, R., Rodríguez, M. A., & Hussainova, I. (2020). Selective laser sintered bio-inspired silicon-wollastonite scaffolds for bone tissue engineering. Materials Science and Engineering: C, 116(111223), 1-11.
Kao, C. T., Huang, T. H., Chen, Y. J., Hung, C. J., Lin, C. C., & Shie, M. Y. (2014). Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement. Materials Science and Engineering: C, 43, 126-134.
Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474-5491.
Kazek-Kęsik, A., Dercz, G., Kalemba, I., Suchanek, K., Kukharenko, A. I., Korotin, D.M., Michalska, J., Krząkała, A., Piotrowski, J., Kurmaev, E. Z., Cholakh, S. O., & Simka, W. (2014). Surface characterisation of Ti–15Mo alloy modified by a PEO process in various suspensions. Materials Science and Engineering: C, 39, 259-272.
Ke, X., Zhuang, C., Yang, X., Fu, J., Xu, S., Xie, L., Gou, Z., Wang, J., Zhang, L., & Yang, G. (2017). Enhancing the osteogenic capability of core–shell bilayered bioceramic microspheres with adjustable biodegradation. ACS Applied Materials & Interfaces, 9(29), 24497-24510.
De Mascheville Lengler, H. C., Vicenzi, J., & Bergmann, C. P. Caracterização Comparativa de Fundentes para Emprego na Indústria Cerâmica.
Li, T., Peng, M., Yang, Z., Zhou, X., Deng, Y., Jiang, C., Xiao, M., & Wang, J. (2018). 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Acta biomaterialia, 71, 96-107.
Lin, K., Chang, J., & Shen, R. (2009). The effect of powder properties on sintering, microstructure, mechanical strength and degradability of β-tricalcium phosphate/calcium silicate composite bioceramics. Biomedical Materials, 4(6), 065009.
Lin, K., Liu, Y., Huang, H., Chen, L., Wang, Z., & Chang, J. (2015). Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model. Journal of Materials Science: Materials in Medicine, 26(6), 1-8.
Liu, C. H., Hung, C. J., Huang, T. H., Lin, C. C., Kao, C. T., & Shie, M. Y. (2014). Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway. Materials Science and Engineering: C, 43, 359-366.
Liu, S., Jin, F., Lin, K., Lu, J., Sun, J., Chang, J., Dai, K., & Fan, C. (2013). The effect of calcium silicate on in vitro physiochemical properties and in vivo osteogenesis, degradability and bioactivity of porous β-tricalcium phosphate bioceramics. Biomedical Materials, 8(2), 025008
Martinez-Zelaya, V. R., Zarranz, L., Herrera, E. Z., Alves, A. T., Uzeda, M. J., Mavropoulos, E., Rossi, A. L., Mello, A., Granjeiro, J. M., Calasans-Maia, M. D., & Rossi, A. M. (2019). In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: zinc and calcium bioavailability and bone regeneration. International Journal of Nanomedicine, 14, 3471.
Martins, S., Soares, A., & Viana, P. (2013). Flotação de wollastonita–uma revisão. In XXV Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa & VIII Meeting of the Southern Hemisphereon Mineral Technology (pp. 203-210).
Meseguer-Olmo, L., Aznar-Cervantes, S., Mazón, P., & De Aza, P. N. (2012). “In vitro” behaviour of adult mesenchymal stem cells of human bone marrow origin seeded on a novel bioactive ceramics in the Ca2SiO4–Ca3(PO4)2 system. Journal of Materials Science: Materials in Medicine, 23(12), 3003-3014.
Miguel, F. B., Cardoso, A. K. M., Barbosa Júnior, A. A., Marcantonio Jr, E., Goissis, G., & Rosa, F. P. (2006). Morphological assessment of the behavior of three‐dimensional anionic collagen matrices in bone regeneration in rats. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 78(2), 334-339
Miguel, F. B., Barbosa Júnior, A. A., de Paula, F. L., Barreto, I. C., Goissis, G., & Rosa, F. P. (2013). Regeneration of critical bone defects with anionic collagen matrix as scaffolds. Journal of Materials Science: Materials in Medicine, 24(11), 2567-2575.
Mohammadi, H., Hafezi, M., Nezafati, N., Heasarki, S., Nadernezhad, A., Ghazanfari, S. M. H., & Sepantafar, M. (2014). Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair: bioactivity and biological properties. Journal of Ceramic Science and Technology, 5(1), 1-12.
Monção, M. M., Barreto, I. C., Miguel, F. B., Oliveira, L. F. C., Carrodeguas, R. G., & Araújo, R. P. C. (2022). Raman spectroscopy analysis of wollastonite/tricalcium Phosphate glass-ceramics after implantation in critical bone defect in rats. Materials Sciences and Applications, 13(12), 317-333.
Morejón Alonso, L. (2011). Avaliação de cimentos ósseos de fosfatos de cálcio com adições de aluminato e silicato de cálcio (Doctoral dissertation, Universidade Federal do Rio Grande do Sul).
Motisuke, M., Santos, V. R., Bazanini, N. C., & Bertran, C. A. (2014). Apatite bone cement reinforced with calcium silicate fibers. Journal of Materials Science: Materials in Medicine, 25(10), 2357-2363.
Nair, M. B., Varma, H. K., Menon, K. V., Shenoy, S. J., & John, A. (2009). Reconstruction of goat femur segmental defects using triphasic ceramic-coated hydroxyapatite in combination with autologous cells and platelet-rich plasma. Acta Biomaterialia, 5(5), 1742-1755.
Ni, S., Chang, J. (2009). In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. Journal of Biomaterials Applications, 24(2), 139-158.
Osorio, R., Yamauti, M., Sauro, S., Watson, T. F., & Toledano, M. (2012). Experimental resin cements containing bioactive fillers reduce matrix metalloproteinase–mediated dentin collagen degradation. Journal of Endodontics, 38(9), 1227-1232.
Parrilla-Almansa, A., García-Carrillo, N., Ros-Tárraga, P., Martínez, C. M., Martínez-Martínez, F., Meseguer-Olmo, L., & De Aza, P. N. (2018). Demineralized bone matrix coating Si-Ca-P ceramic does not improve the osseointegration of the scaffold. Materials, 11(9), 1580.
Pires, A. L. R., Bierhalz, A. C., & Moraes, Â. M. (2015). Biomateriais: tipos, aplicações e mercado. Química Nova, 38, 957-971.
Por, Y. C., Barceló, C. R., Salyer, K. E., Genecov, D. G., Troxel, K., Gendler, E., Elsalanty, M. E., & Opperman, L. A. (2007). Bone generation in the reconstruction of a critical size calvarial defect in an experimental model. Annals Academy of Medicine Singapore, 36(11), 911-919.
Ribeiro, I. I. dos A., Almeida, R. dos S., Rocha, D. N. da, Silva, H. P. da, Miguel, F. B., & Rosa, F. P. (2014). Biocerâmicas e polímero para a regeneração de defeitos ósseos críticos. Revista de Ciências Médicas e Biológicas, 13(3), 298-302.
Saadaldin, S. A., Dixon, S. J., & Rizkalla, A. S. (2014). Bioactivity and biocompatibility of a novel wollastonite glass-ceramic biomaterial. Journal of Biomaterials and Tissue Engineering, 4(11), 939-946.
Santos, G. G., Vasconcelos, L. Q., Poy, S. C. S., Almeida, R. S., Barbosa Júnior, A. A., Santos, S. R. A., Rossi, A. M., Miguel, F. B., & Rosa, F. P. (2019). Influence of the geometry of nanostructured hydroxyapatite and alginate composites in the initial phase of bone repair. Acta Cirúrgica Brasileira, 34.
Santos, G. G., Meireles, E. C. A., & Miguel, F. B. (2020). Wollastonite/TCP composites for bone regeneration: systematic review and meta-analysis. Cerâmica, 66, 277-283.
Santos, G. G., Miguel, I. R. J. B., Barbosa Junior, A.A., Barbosa, W. T., Almeida, K. V., Carrodeguas, R. G., Araújo, R.P.C., & Rosa, F. P. (2021). Bone regeneration using Wollastonite/β-TCP scaffolds implants in critical bone defect in rat calvaria. Biomedical Physics & Engineering Express, 7(5), 055015.
Santos, L. J., Saito, N. H., & Nunes, E. D. C. D. (2015). Análise das propriedades de compósitos de polipropileno com wollastonita em comparação ao talco. Engenharia no Século XXI Volume 6, 112.
Schickle, K., Zurlinden, K., Bergmann, C., Lindner, M., Kirsten, A., Laub, M., Telle, R., Jennissen, H., & Fischer, H. (2011). Synthesis of novel tricalcium phosphate-bioactive glass composite and functionalization with rhBMP-2. Journal of Materials Science: Materials in Medicine, 22(4), 763-771
Siqueira, L., Paula, C. G., Gouveia, R. F., Motisuke, M., & Trichês, E. S. (2019). Evaluation of the sintering temperature on the mechanical behavior of β-tricalcium phosphate/calcium silicate scaffolds obtained by gelcasting method. Journal of the Mechanical Behavior of Biomedical Materials, 90, 635-643.
Siqueira, R. L., & Zanotto, E. D. (2011). Biosilicato®: histórico de uma vitrocerâmica brasileira de elevada bioatividade. Química Nova, 34, 1231-1241.
Sola, D., & Grima, L. (2018). Laser machining and in vitro assessment of wollastonite-tricalcium phosphate eutectic glasses and glass-ceramics. Materials, 11(1), 125.
Srinath, P., Venu Gopal Reddy, K., Samudrala, R. K., & Abdul Azeem, P. (2019). In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Materials Science and Engineering: C, 98, 109–117.
Srinath, P., Azeem, P. A., Venu Gopal Reddy, K., Penugurti, V., & Manavathi, B. (2020). Zirconia-containing wollastonite ceramics derived from bio waste resources for bone tissue engineering. Biomedical Materials, 15(5), 1-27.
Su, C. C., Kao, C. T., Hung, C. J., Chen, Y. J., Huang, T. H., & Shie, M. Y. (2014). Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate. Materials Science and Engineering: C, 37, 156-163.
Tanaka, R., Yamazaki, J. S., Sendyk, W. R., Teixeira, V. P., & França, C. M. (2008). Incorporação dos enxertos ósseos em bloco: processo biológico e considerações relevantes. Conscientia e Saúde, 7(3), 323-327.
Tumedei, M., Savadori, P., & Del Fabbro, M. (2019). Synthetic blocks for bone regeneration: a systematic review and meta-analysis. International Journal of Molecular Sciences, 20(17), 4221.
Vajgel, A., Mardas, N., Farias, B. C., Petrie, A., Cimões, R., & Donos, N. (2014). A systematic review on the critical size defect model. Clinical Oral Implants Research, 25(8), 879-893.
Wang, C., Lin, K., Chang, J., & Sun, J. (2013). Osteogenesis and angiogenesis induced by porous β-CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials, 34(1), 64-77.
Wang, C., Lin, K., Chang, J., & Sun, J. (2014). The stimulation of osteogenic differentiation of mesenchymal stem cells and vascular endothelial growth factor secretion of endothelial cells by β‐CaSiO3/β-Ca3(PO4)2 scaffolds. Journal of Biomedical Materials Research Part A, 102(7), 2096-2104.
Wang, C., Xue, Y., Lin, K., Lu, J., Chang, J., & Sun, J. (2012). The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3 (PO4)2 composite bioceramics. Acta biomaterialia, 8(1), 350-360.
Wang, G., Roohani-Esfahani, S. I., Zhang, W., Lv, K., Yang, G., Ding, X., Zou, D., Cui, D., Zreiqat, H., & Jiang, X. (2017). Effects of Sr-HT-Gahnite on osteogenesis and angiogenesis by adipose derived stem cells for critical-sized calvarial defect repair. Scientific Reports, 7(1), 1-11.
Xu, A., Zhuang, C., Xu, S., He, F., Xie, L., Yang, X., & Gou, Z. (2018). Optimized bone regeneration in calvarial bone defect based on biodegradation-tailoring dual-shell biphasic bioactive ceramic microspheres. Scientific Reports, 8(1), 1-14.
Yan, X., Huang, X., Yu, C., Deng, H., Wang, Y., Zhang, Z., Qiao, S., Lu, G., & Zhao, D. (2006). The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials, 27(18), 3396-3403.
Yu, X., Zhao, T., Qi, Y., Luo, J., Fang, J., Yang, X., Liu, X., Xu, T., Yang, Q., Gou, Z., & Dai, X. (2018). In vitro chondrocyte responses in Mg-doped wollastonite/hydrogel composite scaffolds for osteochondral interface regeneration. Scientific Reports, 8(1), 1-9.
Zhao, H., Park, Y., Lee, D. H., & Park, A. H. A. (2013). Tuning the dissolution kinetics of wollastonite via chelating agents for CO2 sequestration with integrated synthesis of precipitated calcium carbonates. Physical Chemistry Chemical Physics, 15(36), 15185-15192.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 George Gonçalves dos Santos; Luisa Queiroz Vasconcelos; Isabela Cerqueira Barreto; Fúlvio Borges Miguel; Roberto Paulo Correia de Araújo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.