Evaluation of chemical and physical characteristics of pumpkin flour (Cucurbita maxima): pulp and seeds

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.31811

Keywords:

Grain; Mesocarp; Drying; Dehydration.

Abstract

The pumpkin pumpkin (Cucurbita maxima) is popular in Brazil and is among the three varieties that stand out with the highest consumption in the country. Pumpkin pulp is considered to be rich in natural antioxidants, carotenoids. Humans do not synthesize this pigment, so the need for it is satisfied by eating foods containing carotene. The seeds also have carotenoid content, in addition to total phenolics, flavonoids and mineral content, highlighting the amount of Zinco. In addition to the products already on the market, based on pumpkin pumpkin, there is also the potential for pumpkin flour to be used as an ingredient in breads, baked goods and gluten-free pasta. The objective of this work was the development of pumpkin pulp and seeds flour, seeking the best time/temperature binomial for dehydration and physicochemical analysis. The pulp flour moisture was considered within the limits established by Anvisa. The ash value did not differ between the pulp and seed flour samples. The protein content was higher in the seed flour, as well as the titratable acidity and the total fiber content. The mineral composition of the seed meal stood out due to the high content of Zinco. From the drying curves it was possible to observe that the higher temperature allowed a shorter drying time, which would make it better economically. The flours had a high content of minerals and organic matter which make them an attractive and viable commercial alternative.

References

Akpinar, E., Midilli, A., & Bicer, Y. (2003). Experimental investigation of drying behaviour and conditions of pumpkin slices via a cyclone-type dryer. Journal of the Science of Food and Agriculture, 83(14), 1480–1486.

Alves, J. A., Vilas Boas, E. V. D. B., Souza, E. C. D., Vilas Boas, B. M., & Piccoli, R. H. (2010). Vida útil de produto minimamente processado composto por abóbora, cenoura, chuchu e mandioquinha-salsa. Ciência e Agrotecnologia, 34(1), 182–189.

AOAC. (2005). Official Methods of Analysis of AOAC International (17th ed.).

Arévalo-Pinedo, A., & Murr, F. E. X. (2005). Influência da pressão, temperatura e pré-tratamentos na secagem a vácuo de cenoura e abóbora. Food Science and Technology, 25(4), 636–643.

Brasil (2005). Resolução RDC no 263, de 22 de setembro de 2005, Agência Nacional De Vigilância Sanitária – Anvisa. “Regulamento Técnico Para Produtos De Cereais, Amidos, Farinhas E Farelos”, Diário Oficial da União, Brasília (DF), de 23 de setembro de 2005.

Chitarra, M. I. F., & Chitarra, A. B. (1990). Pós-colheita de frutos e hortaliças: fisiologia e manuseio. Esal/Faepe.

Dias, M. G., Olmedilla-Alonso, B., Hornero-Méndez, D., Mercadante, A. Z., Osorio, C., Vargas-Murga, L., & Meléndez-Martínez, A. J. (2018). Comprehensive Database of Carotenoid Contents in Ibero-American Foods. A Valuable Tool in the Context of Functional Foods and the Establishment of Recommended Intakes of Bioactives. Journal of Agricultural and Food Chemistry, 66(20), 5055–5107.

Dimitry, M. Y., Edith, D. M. J., Therese, B. A. M., Emmanuel, P. A., Armand, A. B., Leopold, T. N., & Nicolas, N. Y. (2022). Comparative evaluation of bioactive compounds, nutritional and physicochemical properties of five Cucurbita species flours of South Cameroon. South African Journal of Botany, 145, 458–467.

Elvira-Torales, L. I., García-Alonso, J., & Periago-Castón, M. J. (2019). Nutritional Importance of Carotenoids and Their Effect on Liver Health: A Review. Antioxidants, 8(7), 229.

Hoenig, M. (2001). Preparation steps in environmental trace element analysis — facts and traps. Talanta, 54(6), 1021–1038.

Hussain, A., Kausar, T., Din, A., Murtaza, M. A., Jamil, M. A., Noreen, S., Rehman, H. ur, Shabbir, H., & Ramzan, M. A. (2021). Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin ( Cucurbita maxima ). Journal of Food Processing and Preservation, 45(6).

Kulaitienė, J., Jarienė, E., Danilčenko, H. Černiauskienė, J. Wawrzyniak, A., Hamulka, J., & Juknevičienė, E. (2014). Chemical composition of pumpkin (Cucurbita maxima D.) flesh flours used for food. Journal of Food, Agriculture & Environment, 12(3&4), 61–64.

Moraes, M. S., Melo Queiroz, A. J., Figueirêdo, R. M. F., Paz de Matos, J. D., Silva, L. P. F. R., Nascimento Silva, S., & Vieira, A. F. (2021). Germinated seeds of three Cucurbita sp. varieties: Physical characteristics, minerals profile, and drying behavior. Journal of Food Process Engineering, 44(11).

Naves, L. de P., Corrêa, A. D., Abreu, C. M. P. de, & Santos, C. D. dos. (2010). Nutrientes e propriedades funcionais em sementes de abóbora (Cucurbita maxima) submetidas a diferentes processamentos. Ciência e Tecnologia de Alimentos, 30, 185–190Ouyang, M., Huang, Y., Wang, Y., Luo, F., & Liao, L. (2022). Stability of carotenoids and carotenoid esters in pumpkin (Cucurbita maxima) slices during hot air drying. Food Chemistry, 367, 130710.

Park, K. J., Yado, M. K. M., & Brod, F. P. R. (2001). Estudo de secagem de pêra bartlett (Pyrus sp.) em fatias. Food Science and Technology, 21(3), 288–292.

Procida, G., Stancher, B., Cateni, F., & Zacchigna, M. (2013). Chemical composition and functional characterisation of commercial pumpkin seed oil. Journal of the Science of Food and Agriculture, 93(5), 1035–1041.

Queiroz, M. R., & Nebra, S. A. (2001). Theoretical and experimental analysis of the drying kinetics of bananas. Journal of Food Engineering, 47(2), 127–132.

Rezig, L., Chouaibi, M., Msaada, K., & Hamdi, S. (2012). Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Industrial Crops and Products, 37(1), 82–87.

Sacilik, K. (2007). Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). Journal of Food Engineering, 79(1), 23–30.

Sharma, A., Dhiman, A. K., & Attri, S. (2021). Encapsulation of extracted carotenoids of Cucurbita maxima through lyophilization. Pigment & Resin Technology, 50(6), 523–532.

Silva, J. S., Simão, A. A., Marques, T. R., Leal, R. S., & Corrêa, A. D. (2014). Chemical constituents of the pumpkin seeds flour. Journal of Biotechnology, 5(2), 148–156.

Stępień, A., Witczak, M., & Witczak, T. (2022). The Thermal Characteristics, Sorption Isotherms and State Diagrams of the Freeze-Dried Pumpkin-Inulin Powders. Molecules, 27(7), 2225.

UNICAMP, O. N. (2006). TACO–Tabela Brasileira de Composição de Alimentos. Editora Fórmula.

Vieira, K. H., Lima, F. R., Melo, R. de, Pereira, K. C., Oliveira, C. D., Mendes, C. F., Pinto, N. A. V. D., & Souza, P. M. de. (2021). caracterização da farinha de semente de abóbora obtida por secagem em micro-ondas e estufa / characterization of pumpkin seed flour obtained by drying in microwaves and oven. Brazilian Journal of Development, 7(3), 22267–22283.

Yoshida, M., Tabata, A., Niino, T., Chiku, K., Nakashita, R., & Suzuki, Y. (2022). Potential application of light element stable isotope ratio in crude fiber for geographical origin verification of raw and cooked kabocha pumpkin (Cucurbita maxima). Food Chemistry, 373, 131462.

Published

12/07/2022

How to Cite

GOMES, E. da S. .; MARINS, A. R. de .; GOMES, R. G. . Evaluation of chemical and physical characteristics of pumpkin flour (Cucurbita maxima): pulp and seeds. Research, Society and Development, [S. l.], v. 11, n. 9, p. e36211931811, 2022. DOI: 10.33448/rsd-v11i9.31811. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31811. Acesso em: 13 aug. 2022.

Issue

Section

Agrarian and Biological Sciences