Fundamentals for the fabrication of a displacement meter to determine the elastic constants of wood, considering its anisotropy

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.31910

Keywords:

Portable displacement meter; Tropical wood; Elastic constants; Flexibility matrix.

Abstract

The objective of this work is the development of a portable displacement meter to determine the elastic constants of Brazilian woods. The elastic constants that give rise to the flexibility matrix were determined through the compression test on specimens made with the orientation of the fibers in six directions: radial, tangential, longitudinal, longitudinal-radial, longitudinal-tangential and radial-tangential. The species used were: Dinizia excels (angelim vermelho), Apuleia leiocarpa (garapa) e Peltogyne discolor (roxinho). In order to reduce cost and time spent on gluing electrical strain gauges, a displacement meter was developed, with sufficient accuracy to determine the deformations in all directions of the fibers and that allows the reuse of the displacement meter in other tests of compression. An arc-shaped steel strip was used, on which four electrical strain gauges were glued, two at the top and two at the bottom. To obtain greater sensitivity in bending and to eliminate the influence of temperature on the deformation of the electrical strain gauges, they were configured in a Wheatstone full bridge circuit, and then connected to a data acquisition system. The results allowed to conclude that the displacement meters were efficient and effective to determine the deformations during the compression test and consequently to determine all the components of the flexibility matrix.

Author Biography

Edgar Valdimiro Mantilla Carrasco, Universidade Federal de Minas Gerais

Departamento de Tecnologia do Design, da Arquitetura e do Urbanismo, Professor Adunto.

Departamento de Engenharia de estruturas, Prof. Titular, aposentado

References

Alves, R. C. (2015). Determinação das constantes elásticas da madeira considerando a sua ortotropia. Tese de Doutorado, Universidade Federal de Minas Gerais, Brasil.

Ando, K., Mizutani, M., Taniguchi, Y. & Yamamoto, H. (2013). Time dependence of Poisson’s effect in wood III: asymmetry of three-dimensional viscoelastic compliance matrix of Japanese cypress. Journal of Wood Science, 59:290–298. 10.1007/s10086-015-1477-8.

Associação Brasileira de Normas Técnicas (1997). Projeto de estruturas de madeira. NBR 7190.

Ballarin, A. W., & Nogueira, M. (2003). Caracterização elástica da madeira de Eucalyptus citriodora. Cerne, 9(1), 69-83.

Bindzi, I., & Samson, M. (1995). New formula for influence of spiral grain on bending stiffness of wooden beams. Journal of structural engineering, 121(11), 1541-52. 10.1061/(ASCE)0733-9445(1995)121:11(1541).

Blomberg. J., & Persson, P. (2007). Swelling pressure of semi-isostatically densified wood under different mechanical restraints. Wood Science and Technology, 41, 401–415. 10.1007/s00226-006-0118-1.

Bodig, J., & Jayne, Ba. (1993). Mechanics of wood and wood composites. Krieger Publ. Comp. Malabar.

Bucur, V. (2006). Acoustics of wood. (2a. ed.), CRC Press, 399p.

Cabrero, J.M., Heiduschke, A., & Haller, P. (2010). Analytical assessment of the load-carrying capacity of axially loaded wooden reinforced tubes. Composite Structures, 92, 2955–2965. 10.1016/j.compstruct.2010.05.007.

Carrasco, E. V. M. (1989). Resistência, elasticidade e distribuição de tensões nas vigas retas de madeira laminada colada. Tese de Doutorado, Universidade de São Paulo, Brasil.

Chang, C. W., Hsu, F. L., Chang, F. C., & Huang, Y. S. (2021). Measuring elastic constants of wood through static bending using a strain gauge. European Journal of Wood and Wood Products, 80, 611–620. 10.1007/s00107-021-01771-6.

Diaz, C. A., Afrifah, K. A., Jin, S., & Matuana, L. M. (2011). Estimation of modulus of elasticity of plastics and wood plastic composites using a Taber stiffness tester. Composites Science and Technology, 71, 67–70. 10.1016/j.compscitech.2010.10.007.

Garrido, N. (2004). Caracterização do comportamento ao corte da madeira através do ensaio offaxis, Dissertação de Mestrado, Universidade de Trás os Montes e Alto Douro, Vila Real, Portugal.

Gómez-Royuela, J. L., Majano-Majano, A., Lara-Bocanegra, A., & Reynolds, T. P.S. (2021). Determination of the elastic constants of thermally modified beech by ultrasound and static tests coupled with 3D digital image correlation. Construction and Building Materials, 302, 124270. 10.1016/j.conbuildmat.2021.124270.

Gonçalves, R., & Trinca, A. T. (2014). Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Science and Technology, 48, 269–287. 10.1007/s00226-013-0598-8.

IPT (2013). Sistema de Informações de Madeiras Brasileiras. Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, (Relatório No 27 078).

Jakiela, S. Bratasz, L., & Kozłowski, R. (2008). Numerical modelling of moisture movement and related stress field in lime wood subjected to changing climate conditions. Wood Science and Technology, 42, 21-37. 10.1007/s00226-007-0138-5.

Keunecke, D., Hering, S., & Niemz, P. (2008). Three-dimensional elastic behaviour of common yew and Norway spruce. Wood Science and Technology, 42, 633–647. 10.1007/s00226-008-0192-7.

Lekhnitskii, S. G. (1981). Theory of Elasticity of an Anisotropic Body. MirPublishers, Moscou.

LG Steel (2015). Em Aço de Médio e Alto carbono - F - 436 - aço 1045 / temp. 38/45 hrc. http://lgsteel.com.br/arruela-lisa-em-aco-medio-alto-carbonolg-436-aco.htm.

Lima, I. L., Ranzini, M., Longui, E. L., & Barbosa, J. A. (2021). Wood characterization of Tectona grandis L. F. cultivated in Brazil: a review of the last 30 years. Research, Society and Development, 10(14), e162101421549. 10.33448/rsd-v10i14.21549.

Mascia, N. T., & Lahr, F. A. R. (2006). Remarks on Orthotropic Elastic Models Applied to Wood. Materials Research, 9(3), 301-310. 10.1590/S1516-14392006000300010.

Mascia, N. T., & Nicolas, E. A. (2013). Determination of Poisson s ratios in relation to fiber angle of a tropical wood species. Construction & Building Materials, 41, 691-696. 10.1016/j.conbuildmat.2012.12.014.

Mascia, N. T., & Vanalli, L. (2012). Evaluation of the coefficients of mutual influence of wood through off-axis compression tests. Construction & Building Materials, 30, 522-528. 10.1016/j.conbuildmat.2011.12.048.

Mascia, N.T. (1991). Considerações a respeito da anisotropia na madeira. Tese Doutorado, Universidade de São Paulo, Brasil.

Morais, J. J. (2000). Comportamento Mecânico Não-Linear da Madeira. 2º Seminário de engenharia. Universidade de Trás os Montes e Alto Douro, Vila Real, Portugal.

Naruse, K. (2003). Estimation of shear moduli of wood by quasi-simple shear tests. Journal of Wood Science, 49, 479–484. 10.1007/s10086-003-0515-0.

Nicolas, E. A., Mascia, N. T., & Todeschini, R. (2009). Ensaios uniaxiais e biaxiais para avaliação de critério de resistência (Tsai-Wu) de materiais anisotrópicos para a madeira. Revista Minerva, 6, 107-116.

Ozyhar, T., Hering, S., Sanabria, S. J., & Niemz, P. (2013). Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Science and Technology, 47, 329–341. 10.1007/s00226-012-0499-2.

Santos, J. O. X., Fernandes, S. C., Freitas, H. S., Barros, R. P., & Barros, L. M. (2020). Avaliação de propriedades físicas e mecânicas de quatro espécies de madeira amazônica para uso na construção civil. Research, Society and Development, 9(12), e44891211379. 10.33448/rsd-v9i12.11379.

Schniewind, A. P., Barrett, J. D. (1972). Wood as a linear orthotropic viscoelastic material. Wood Science and Technology, 6(1), 43–57. 10.1007/BF00351807.

Sebera, V., Tippner, J., Simek, M., Srajer, J., Decky, D., & Klimova, H. (2014). Poisson’s ratio of the MDF in respect to vertical density profile. European Journal of Wood and Wood Products, 72, 407–410. 10.1007/s00107-014-0780-1.

Shamov, I. V. (1965). Long-time study of Poisson’s ratio for polyethylene stressed in the small strains range. Polymer Mechanics, 1(3), 36–38. 10.1007/BF00858800.

Sliker, A. (1972). Measuring Poisson's ratios in wood. Experimental Mechanics, 12(5), 239-242.

Taniguchi, Y., Ando, K., & Yamamoto, H. (2010). Determination of three-dimensional viscoelastic compliance in wood by tensile creep test. Journal of Wood Science, 56: 82–84. 10.1007/s10086-009-1069-6.

Vázquez, C., Gonçalves, R. Bertoldo, C., Baño, V., Vega, A., Crespo, J. & Guaita, M. (2015). Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods. Wood Science and Technology, 49, 607–622. 10.1007/s00226-015-0719-7.

Xin, Z., Zhang, H., Guan, C., Liu, J., Liu, F., Gong, Y., Li, H., & Shen, Y. (2022). Determining elastic constants of full-size cross laminated timber panel supported on four nodes using a vibration method. Construction and Building Materials, 323, 126513. 10.1016/j.conbuildmat.2022.126513.

Published

10/07/2022

How to Cite

CARRASCO, E. V. M.; ALVES, R. C.; SMITS, M. A.; PIZZOL, V. D.; OLIVEIRA, A. L. C.; MANTILLA, J. N. R. Fundamentals for the fabrication of a displacement meter to determine the elastic constants of wood, considering its anisotropy. Research, Society and Development, [S. l.], v. 11, n. 9, p. e31711931910, 2022. DOI: 10.33448/rsd-v11i9.31910. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31910. Acesso em: 22 dec. 2024.

Issue

Section

Engineerings