Phosphate fertilization and bioactivator influences on fractions of organic matter and soil microbial biomass

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.32086

Keywords:

Phosphorus; Organic matter; Soil microbial biomass; Bioactivators.

Abstract

Soil organic matter is considered a potential source of phosphorus (P) for plants because of biological cycling. Bioactivators are characterized as tools that can help soil microbial activity and the availability of P demanded by plants. The objective of this study was to evaluate the influence of the use of bioactivators and phosphate fertilization on the activity of soil microbial biomass and humified fractions of organic matter. The experimental design was completely randomized in a factorial scheme (6 × 2), with the first factor consisting of six doses of phosphorus applied to the soil (0, 30, 60, 90, 120, and 150 kg ha-1 of P2O5), using triple superphosphate as the source, and the second factor being the presence or absence of soil and plant bioactivator application, with four replications. The evaluated characteristics were soil microbial biomass carbon (SMBC), soil basal respiration (SBR), microbial biomass nitrogen (MBN), metabolic quotient (qCO2), microbial quotient (qmic), total organic carbon (TOC), fulvic acid fraction carbon (FAC), humic acid fraction carbon (HAC), and humin fraction carbon (HUMC). The use of soil and plant bioactivators and mineral phosphate fertilizer promoted changes in soil microbial activity. Increasing doses of phosphate fertilization promoted a reduction in the carbon characteristics of microbial biomass and basal soil respiration in the presence or absence of soil and plant bioactivators. Moreover, the use of bioactivator promoted higher averages for soil microbial biomass carbon, soil basal respiration, metabolic quotient, humic acid and humin and reduced the levels of microbial quotient, total organic carbon and fulvic acid.

References

Agostinho, P. R., Gomes, M. S. S., Gallo, A. S., Guimarães, N. F., Gomes, M. S. ,& Silva, R. F. (2017). Microbial biomass in soil fertilized with vinasse and cultivated with maize segund-season in succession to legumes. Acta Iguazu, 6, 31-43. https://doi.org/10.48075/actaiguaz.v6i3.16259

Almeida, L. S., Ferreira, V. A. S., Fernandes, L. A., Frazão, L. A., Oliveira, A. L. G., & Sampaio, R. A. (2016). Soil quality indicators in irrigated sugarcane crops. Pesquisa Agropecuária Brasileira, 51, 1539–1547. https://doi.org/10.1590/s0100-204x2016000900053

Alvaro-Fuentes, J., Lopez, M. V., Arrue, J. L., Moret, D., & Paustian, K. (2009). Tillage and cropping effects on soil organic C in Mediterranean semiarid agroecosystems: testing the century model. Agriculture, Ecosystems & Environment, 134, 211–217. https://doi.org/10.1016/j.agee.2009.07.001

Anderson, T. H., & Domsch, K. H. (1989). Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry, 21, 471–479. https://doi.org/10.1016/0038-0717(89)90117-X

Anderson, T. H., & Domsch, K. H. (2010). Soil microbial biomass: The eco-physiological approach. Soil Biology and Biochemistry, 42, 2039-2043. https://doi.org/10.1016/j.soilbio.2010.06.026

Antisari, L. V., Ferronato, C., De Feudis, M., Natali, C., Bianchini, G., & Falsone, G. (2021). Soil Biochemical Indicators and Biological Fertility in Agricultural Soils: A Case Study from Northern Italy. Minerals, 11, 219. https://doi.org/10.3390/min11020219

Antoniolli, Z. I., Jacques, R. J., Steffen, R. B., Steffen, G. P. K., Trentin, E., Schimit, J., & Bassaco, A. C. (2016). Efeito do Penergetic Pflanzen e Penergetic Kompost na atividade dos microrganismos do solo de uma lavoura de trigo. Resultados Oficiais – (2ª Edição) - Tecnologia em Bioativação - Penergetic®, 1, 74-78. https://issuu.com/penergetic_brasil/docs/revista_resultados_penergetic_portu/76

Aparecido de Souza, A., Zanuto de A. F., & Alberton, O. (2017). Growth and yield of soybean with penergetic application. Scientia Agraria, 18, 95–98. http://dx.doi.org/10.5380/rsa.v18i4.52886

Araújo, T. D. S., Gallo, A. D. S., Araujo, F. D. S., Santos, L. C. D., Guimarães, N. D. F., & Silva, R. F. D. (2019). Biomass and microbial activity in soil cultivated with maize intercropped with soil cover legumes. Revista de Ciências Agrárias, 42, 347–357. https://doi.org/10.19084/rca.15433

Ashraf, M. N., Jusheng, G., Lei, W., Mustafa, A., Waqas, A., Aziz, T., & Minggang, X. (2021). Soil microbial biomass and extracellular enzyme–mediated mineralization potentials of carbon and nitrogen under long-term fertilization (> 30 years) in a rice–rice cropping system. Journal of Soils and Sediments, 21, 3789-3800. https://doi.org/10.1007/s11368-021-03048-0

Benbi, D. K., Brar, K., Toor, A. S., & Singh, P. (2015). Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. Geoderma, 237, 149–158. https://doi.org/10.1016/j.geoderma.2014.09.002

Benites, V. M., Madari, B., & Machado, P. L. O. A. (2003). Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado de baixo custo. Embrapa Solos, 16, 1–7. http://encurtador.com.br/cnwDG

Bera, T., Sharma, S., Thind, H. S., Singh, Y., Sidhu, H. S., & Jat, M. L. (2018). Changes in soil biochemical indicators at different wheat growth stages under conservation based sustainable intensification agriculture practices of rice-wheat system. Journal of Integrative Agriculture, 17, 1871–1880. https://doi.org/10.1016/S2095-3119(17)61835-5

Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the realease of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837–842. https://doi.org/10.1016/0038-0717(85)90144-0

Bünemann, E. K. (2015). Assessment of gross and net mineralization rates of soil organic phosphorus – a review. Soil Biology and Biochemistry, 89, 82–98. https://doi.org/10.1016/j.soilbio.2015.06.026

Cai, A., Xu, M., Wang, B., Zhang, W., Liang, G., Hou, E., & Luo, Y. (2019). Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil and Tillage Research, 189, 168-175. https://doi.org/10.1016/j.still.2018.12.022

Cardoso, E. J. B. N., & Andreote, F. D. (2016). Microbiologia do solo. Piracicaba: ESALQ. https://doi.org/10.11606/9788586481567

Caron, V. C., Graças, J. P., & Castro, P. R. C. (2015). Condicionadores do solo: ácidos húmicos e fúlvicos. Piracicaba: ESALQ/USP.

Cavalcanti, A. C., Oliveira, M. G., Covre, A. M., Gotijo, I., Braun, H., & Partelli, F. L. (2017). First approach for soi to conilon coffee in the atlantic region of Bahia. Coffee Science, 12, 316-325. http://sbicafe.ufv.br/handle/123456789/9122

Cheng, F., Peng, X., Zhao, P., Yuan, J., Zhong, C., Cheng, Y., Cui, C., & Zhang, S. (2013). Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains. Plos One, 8, 67353. https://doi.org/10.1371/journal.pone.0067353

Christensen, J. B., Jensen, D. L., Gron, C., Filip, Z., & Christensen, T. H. (1998). Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater. Water Research, 32, 125-135. https://doi.org/10.1016/S0043-1354(97)00202-9

Danchenko, N. N., Artemyeva, Z. S., Kolyagin, Y. G., & Kogut, B. M. (2020). Features of the chemical structure of different organic matter pools in Haplic Chernozem of the Streletskaya steppe: 13C MAS NMR study. Environmental Research, 191, 110205. https://doi.org/10.1016/j.envres.2020.110205

Ebeling, A. G., Anjos, L. H. C. dos, Perez, D. V., Pereira, M. G., & Gomes, F. W. de F. (2011). Chemical properties, organic carbon and humic substances of histosols in different regions of Brazil. Revista Brasileira de Ciência do Solo, 35, 32–336. https://doi.org/10.1590/S0100-06832011000200004

Embrapa – Empresa Brasileira de Pesquisa Agropecuária (2011). Manual de métodos de análise de solo, (2a ed.). Brazil.

Embrapa – Empresa Brasileira de Pesquisa Agropecuária (2018). Sistema brasileiro de classificação de solos. (4a ed.), Brazil.

Etesami, H., Jeong, B. R., & Glick, B. R. (2021). Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria and silicon to P uptake by plant. Frontiers in Plant Science. 12, 699618. https://doi.org/10.3389%2Ffpls.2021.699618

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia: Lavras, 35, 1039-1042. https://doi.org/10.1590/S1413-70542011000600001

Fidelis, R. R., Alexandrino, C. M. S., Silva, D. B., Sugai, M. A. A., & Silva, R. R. (2016). Quality biological indicators of soil in intercropping to jatropha curcas. Applied Research & Agrotechnology, 9, 87–95. https://doi.org/10.5935/PAeT.V9.N3.10

Franzluebbers, A. J., Haney, R. L., Hons, F. M., & Zuberer, D. A. (1996). Active fractions of organic matter in soils with different texture. Soil Biology and Biochemistry, 28, 1367-1372. https://doi.org/10.1016/S0038-0717(96)00143-5

Gómez-Muñoz, B., Larsen, J. D., Bekiaris, G., Scheutz, C., Bruun, S., Nielsen, S., & Jensen, L. S. (2017). Nitrogen ineralization and greenhouse gas emission from the soil application of sludge from reed bed mineralization systems. Journal of Environmental Management, 203, 59–67. https://doi.org/10.1016/j.jenvman.2017.07.042

Goyal, S., Mishra, M. M., Hooda, I. S., & Singh, R. (1992). Organic matter-microbial biomass relationships in field experiments under tropical conditions: Effects of inorganic fertilization and organic amendments. Soil Biology and Biochemistry, 24, 1081–1084. https://doi.org/10.1016/0038-0717(92)90056-4

Guimarães, D. V., Gonzaga, M. I. S., Silva, T. O. da, Silva, T. L. da, Dias, N. S., & Matias M. I. S. (2013). Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research, 126, 177-182. https://doi.org/10.1016/j.still.2012.07.010

Haney, R., Brinton, W., & Evans, E. (2008). Soil CO2 respiration: comparison of chemical titration, IRGA and Solvita Gel System. Renew, 23, 1–6. https://doi:10.1017/S174217050800224X

Huang, P. M., & Hardie, A. G. (2009). Formation mechanisms of HS in the environment. Biophysico-chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. John Wiley and Sons, 42-108. https://doi.org/10.1002/9780470494950.ch2

Islam, K. R., & Weil, R. R. (2000). Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture Ecosystems and Environment, 79, 9-16. https://doi.org/10.1016/S0167-8809(99)00145-0

Jenkinson, D. S., & Powlson, D. S. (1976). The effects of biocidal treatments on metabolism in soil. V-A method for measuring soil biomass. Soil Biology and Biochemistry, 8, 209–213. https://doi.org/10.1016/0038-0717(76)90001-8

Kotzé, E., Loke, P. F., Akhosi-Setaka, M. C., & Du Preez, C. C. (2016). Land use change affecting soil humic substances in three semi-arid agro-ecosystems in South Africa. Agriculture, Ecosystems & Environment, 216, 194–202. https://doi.org/10.1016/j.agee.2015.10.007

Liu, X., Chen, D., Yang, T., Huang, F., Fu, S., & Li, L. (2020). Changes in soil labile and recalcitrant carbon pools after land-use change in a semi-arid agro-pastoral ecotone in Central Asia. Ecological Indicators, 110. https://doi.org/10.1016/j.ecolind.2019.105925

Luo, P., Han, X., Wang, Y., Han, M., Shi, H., Liu, N., & Bai, H. (2015). Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Annals of Microbiology, 65, 533–542. https://doi.org/10.1007/s13213-014-0889-9

Maia, C. M. B. F., & Parron, L. M. (2015). Matéria orgânica como indicador da qualidade do solo e da prestação de serviços ambientais. In: Parron, L. M., Garcia, J. R., Oliveira, E. B. de, Brown, G. G., Prado, R. B. Serviços Ambientais em Sistemas Agrícolas e Florestais do Bioma Mata Atlântica, 1a ed. Colombo. Embrapa: Paraná, 101–108. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1024437

Malý, S., Královec, J., & Hampel, D. (2009). Effects of long-term mineral fertilization on microbial biomass, microbial activity, and the presence of r- and K-strategists in soil. Biology and Fertility of Soils, 45, 753–760. https://doi.org/10.1007/s00374-009-0388-5

Martinez, H. E. P., Marotta, J. J. L., & Mangas, I. B. (2021). Relações solo-planta: Bases para a nutrição e produção vegetal. Editora UFV.

McCarty, G.W., & Meisinger, J.J. (1997). Effects of N fertilizer treatments on biologically active N pools in soils under plow and no tillage. Biology and Fertility of Soils, 24, 406–412. https://doi.org/10.1007/s003740050265

McGonigle, T. P., & Turner, W. G. (2017). Grasslands and croplands have different microbial biomass carbon levels per Unit of Soil Organic carbon. Agriculture, 7, 57. https://doi.org/10.3390/agriculture7070057

Menezes, C. E. G., Guareschi, R. F., Pereira, M. G., Anjos, L. H. C., Correia, M. E. F., Balieiro, F. C., & Piccolo, M. C. (2017). Organic matter in áreas under secondary forests and pasture. Cerne, 23, 283–290. https://doi.org/10.1590/01047760201723032333

Muñoz-Rojas, M., Erickson, T. E., Martini, D., Dixon, K. W., & Merritt, D. J. (2016). Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems. Ecological Indicators, 63, 14–22. https://doi.org/10.1016/j.ecolind.2015.11.038

Nava, I. A., & Gris, E. P. (2014). Uso de bioativador do solo e planta com e sem fertilizante mineral na soja e a relação com a fitodisponibilidade nutricional e componentes de produção. Revista Resultados Oficiais Tecnologia em Bioativação – Penergetic®, 1, 55–57. http://encurtador.com.br/gnEOT

Novais, R. F., & Smyth, T. J. (1999). Fósforo em solo e planta em condições tropicais. Viçosa: UFV.

Novotny, E. H., Turetta, A. P. D., Resende, M. F., & Rebello, C. M. (2020). The quality of soil organic matter, accessed by 13C solid state nuclear magnetic resonance, is just as important as its content concerning pesticide sorption. Environmental Pollution, 266, 115298. https://doi.org/10.1016/j.envpol.2020.115298

Peluco, R. R., Júnior, J. M., Siqueira, D. S., Pereira, G. T., Barbosa, R. S., & Teixeira, D. B. (2015). Mapping adsorbed phosphorus through soil color and magnetic susceptibility. Pesquisa Agropecuária Brasileira, 50, 259–266. https://doi.org/10.1590/S0100-204X2015000300010

Pfeiffer, T., Schuster, S., & Bonhoeffer, S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science, 292, 504-507. https://doi.org/10.1126/science.1058079

Rosa, D. M., Nóbrega, L. H. P., Mauli, M. M., Lima, G. P., & Pacheco, F. P. (2017). Humic substances in soil cultivated with cover crops rotated with maize and soybean. Revista Ciência Agronômica, 48, 221–230. https://doi.org/10.5935/1806-6690.20170026

Rosset, S. J., Lana, M. C., Pereira, M. G., Schiavo, J. A., Rampim, L., & Sarto, M. V. M. (2016). Chemical and oxidizable fractions of soil organic matter under different management systems in an Oxisol. Pesquisa Agropecuária Brasileira, 51, 1529-1538. https://doi.org/10.1590/S0100-204X2016000900052

Saikia, R., Sharma, S., Thind, H. S., & Singh, Y. (2020). Tillage and residue management practices affect soil biological indicators in a rice–wheat cropping system in north-western India. Soil Use and Management, 36, 157–172. https://doi.org/10.1111/sum.12544

Savarese, C., Drosos, M., Spaccini, R., Cozzolino, V., & Piccolo, A. (2021). Molecular characterization of soil organic matter and its extractable humic fraction from long-term field experiments under different cropping systems. Geoderma, 383, 114700. https://doi.org/10.1016/j.geoderma.2020.114700

Schnurer, J., Clarholm, M., & Rosswall, T. (1985). Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biology and Biochemistry, 17, 611–618. https://doi.org/10.1016/0038-0717(85)90036-7

Sharma, S., Singh, P., & Sodhi, G. P. S. (2020). Soil organic carbon and biological indicators of uncultivated vis-à-vis intensively cultivated soils under rice–wheat and cotton–wheat cropping systems in South-Western Punjab. Carbon Management, 11, 681-695. https://doi.org/10.1080/17583004.2020.1840891

Silva, M. O., Santos, M. P., Sousa, A. C. P., Silva, R. L. V., Moura, I. A. A., Silva, R. S., & Costa, K. D. S. (2021). Soil quality: biological indicators for sustainable management. Brazilian Journal of Development, 7, 6853–6875. https://doi.org/10.34117/bjdv7n1-463

Singh, P., & Benbi, D. K. (2020). Nutrient management impacts on net ecosystem carbon budget and energy flow nexus in intensively cultivated cropland ecosystems of north-western India. Paddy and Water Environment, 18, 697–715. https://doi.org/10.1007/s10333-020-00812-9

Souza, G. P., Figueiredo, C. C., & Sousa, D. M. G. (2016). Soil organic matter as affected by management systems, phosphate fertilization, and cover crops. Pesquisa Agropecuária. Brasileira, 51, 1668-1676. http://dx.doi.org/10.1590/s0100-204x2016000900067

Stevenson, F. J. (1994). Humus Chemistry: Genesis, Composition Reactions, 2nd ed. New York: John Wiley & Sons, p. 496.

Stroud, J., Paton, G., & Semple, K. T. (2007). Microbe aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. Journal of Applied Microbiology, 102, 1239-1253. https://doi.org/10.1111/j.1365-2672.2007.03401.x

Swift, R. S. (1996). Organic matter characterization. In: Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T., Sumner, M. E. Methods of soil analysis. Soil Science Society of America, 1, 1011–1069. https://doi.org/10.2136/sssabookser5.3.c35

Tabatabai, M. A. (1994). Soil enzymes. In: Weaver, R. W., Angle, J. S., Bottomley, P. S., editors. Methods of soil analysis: microbiological and biochemical properties. Soil Science Society of America, 2, 775–883. https://doi.org/10.2136/sssabookser5.2.c37

Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análises de solo, plantas e outros materiais. 2a ed. Porto Alegre: UFRGS. Retrieved from http://encurtador.com.br/myCT5

Tejada, M., & Gonzalez, J. L. (2006). The relationships between erodibility and erosion in a soil treated with two organic amendments. Soil and Tillage Research, 91, 186–198. https://doi.org/10.1016/j.still.2005.12.003

Van Hees, J. P., Jones, D. L., Finlay, R., Godbold, D. L., & Ulla, S. (2005). The carbon we do not see the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biology and Biochemistry, 37, 1–13. https://doi.org/10.1016/j.soilbio.2004.06.010

Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology. Soil Biology and Biochemistry, 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6

Yeomans, J. C., & Bremner, J. M. (1988). A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19, 1467–1476. https://doi.org/10.1080/00103628809368027

Downloads

Published

17/07/2022

How to Cite

MARQUES, K. R.; FIDELIS, R. R.; CAVAZZINI, P. H.; OLIVEIRA, L. B. de .; SILVA, R. R. da; BURIN, L. X. Phosphate fertilization and bioactivator influences on fractions of organic matter and soil microbial biomass. Research, Society and Development, [S. l.], v. 11, n. 9, p. e52211932086, 2022. DOI: 10.33448/rsd-v11i9.32086. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32086. Acesso em: 25 apr. 2024.

Issue

Section

Agrarian and Biological Sciences