Susceptibilidade do eixo hipotalâmico-hipofisário-tireoidiano às isoflavonas de soja
DOI:
https://doi.org/10.33448/rsd-v11i9.32089Palavras-chave:
Isoflavonas; Disruptores endócrinos; Hormônios tireóideos; Glândula tireoide.Resumo
O aumento do consumo de produtos à base de soja pode estar relacionado com problemas de saúde, uma vez que o teor de isoflavonas consumidos diariamente, passa a representar níveis capazes de interferir na homeostase corporal, agindo como um desregulador endócrino químico. A interferência causada pelas isoflavonas no eixo hipotalâmico-hipofisário-tireoideano (HHT) pode afetar a produção dos hormônios tireoidianos ao interagir com receptores de estrógenos localizados na tireoide, além de influenciar na ação das desiodases para a conversão hormonal nos tecidos periféricos. Desta forma, o objetivo desta revisão foi evidenciar as possíveis alterações causadas pelo consumo de isoflavonas e o seu impacto sobre a produção dos hormônios tireoidianos. Para isto foram utilizadas plataformas de busca como PubMed, Science Direct e Google Acadêmico. Filtros de busca limitando o ano de publicação dos artigos utilizados como referência não foram aplicados nesta pesquisa devido a relevância que estudos iniciais que abordam a relação entre isoflavonas/soja e desregulação endócrina apresentam. Foram evidenciados efeitos da exposição as isoflavonas de soja (ISOF), sobre as funções tireoidianas relacionadas ao hipotireoidismo subclínico.
Referências
Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M., & Fukami, Y. (1987). Genistein, a specific inhibitor of tyrosine-specific protein kinases. Journal of Biological Chemistry, 262(12), 5592–5595. https://doi.org/https://doi.org/10.1016/S0021-9258(18)45614-1
Arnal, J. F., Lenfant, F., Metivier, R., Flouriot, G., Henrion, D., Adlanmerini, M., Fontaine, C., Gourdy, P., Chambon, P., Katzenellenbogen, B., & Katzenellenbogen, J. (2017). Membrane and nuclear estrogen receptor alpha actions: From tissue specificity to medical implications. Physiological Reviews, 97(3), 1045–1087. https://doi.org/10.1152/physrev.00024.2016
Bai, W., Wang, C., & Ren, C. (2014). Intakes of total and individual flavonoids by US adults. International Journal of Food Sciences and Nutrition, 65(1), 9–20. https://doi.org/10.3109/09637486.2013.832170
Barrett, J. R. (2006). The science of soy: what do we really know? National Institute of Environmental Health Sciences.
Bennetts, H. W., Uuderwood, E. J., & Shier, F. L. (1946). a Specific Breeding Problem of Sheep on Subterranean Clover Pastures in Western Australia. Australian Veterinary Journal, 22(1), 2–12. https://doi.org/10.1111/j.1751-0813.1946.tb15473.x
Bernal, J., Guadaño-Ferraz, A., & Morte, B. (2015). Thyroid hormone transporters—functions and clinical implications. Nature Reviews Endocrinology, 11(7), 406–417. https://doi.org/10.1038/nrendo.2015.66
Bianco, A. C., & Kim, B. W. (2006). Deiodinases: Implications of the local control of thyroid hormone action. In Journal of Clinical Investigation (Vol. 116, Issue 10, pp. 2571–2579). https://doi.org/10.1172/JCI29812
Brix K, Lemansky P, H. v. (1996). Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology.
Bustamante-Barrientos, F. A., Méndez-Ruette, M., Ortloff, A., Luz-Crawford, P., Rivera, F. J., Figueroa, C. D., Molina, L., & Bátiz, L. F. (2021). The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Frontiers in Cellular Neuroscience, 15(March), 1–19. https://doi.org/10.3389/fncel.2021.636176
Cederroth, C. R., & Nef, S. (2009). Soy, phytoestrogens and metabolism: A review. Molecular and Cellular Endocrinology, 304(1–2), 30–42. https://doi.org/10.1016/j.mce.2009.02.027
Chen, G., Vlantis, A., Zeng, Q., & van Hasselt, C. (2008). Regulation of Cell Growth by Estrogen Signaling and Potential Targets in Thyroid Cancer. Current Cancer Drug Targets, 8(5), 367–377. https://doi.org/10.2174/156800908785133150
Citterio, C. E., Targovnik, H. M., & Arvan, P. (2019). The role of thyroglobulin in thyroid hormonogenesis. In Nature Reviews Endocrinology (Vol. 15, Issue 6, pp. 323–338). Nature Research. https://doi.org/10.1038/s41574-019-0184-8
Csaba, G. (2018). Effect of endocrine disruptor phytoestrogens on the immune system: Present and future. Acta Microbiologica et Immunologica Hungarica, 65(1), 1–14. https://doi.org/10.1556/030.65.2018.018
Day, A. J., Cañada, F. J., Díaz, J. C., Kroon, P. A., McLauchlan, R., Faulds, C. B., Plumb, G. W., Morgan, M. R. A., & Williamson, G. (2000). Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters, 468(2–3), 166–170. https://doi.org/10.1016/S0014-5793(00)01211-4
Divi, R. L., Chang, H. C., & Doerge, D. R. (1997). Anti-thyroid isoflavones from soybean. Isolation, characterization, and mechanisms of action. Biochemical Pharmacology, 54(10), 1087–1096. https://doi.org/10.1016/S0006-2952(97)00301-8
Doerge, D. R., & Daniel M Sheehan. (2002). Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect, 110 Suppl 3, 349–353. https://doi.org/10.1289/ehp.02110s3349
Domínguez-López, I., Yago-Aragón, M., Salas-Huetos, A., Tresserra-Rimbau, A., & Hurtado-Barroso, S. (2020). Effects of dietary phytoestrogens on hormones throughout a human lifespan: A review. Nutrients, 12(8), 1–25. https://doi.org/10.3390/nu12082456
Dudovskiy, J. (2016). The ultimate guide to writing a dissertation in business studies: A step-by-step assistance. Pittsburgh, USA, 51.
Fuentes, N., & Silveyra, P. (2019). Estrogen receptor signaling mechanisms. In Advances in Protein Chemistry and Structural Biology (1st ed., Vol. 116). Elsevier Inc. https://doi.org/10.1016/bs.apcsb.2019.01.001
Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., Tujague, M., Ström, A., Treuter, E., Warner, M., & Gustafsson, J. Å. (2007). Estrogen receptors: How do they signal and what are their targets. Physiological Reviews, 87(3), 905–931. https://doi.org/10.1152/physrev.00026.2006
Hüser, S., Guth, S., Joost, H. G., Soukup, S. T., Köhrle, J., Kreienbrock, L., Diel, P., Lachenmeier, D. W., Eisenbrand, G., Vollmer, G., Nöthlings, U., Marko, D., Mally, A., Grune, T., Lehmann, L., Steinberg, P., & Kulling, S. E. (2018). Effects of isoflavones on breast tissue and the thyroid hormone system in humans: a comprehensive safety evaluation. In Archives of Toxicology (Vol. 92, Issue 9). Springer Berlin Heidelberg. https://doi.org/10.1007/s00204-018-2279-8
Ishizuki Y, Hirooka Y, Murata Y, T. K. (1991). The effects on the thyroid gland of soybeans administered experimentally in healthy subjects. Nihon Naibunpi Gakkai Zasshi, 67(5), 622–629. https://doi.org/10.1507/endocrine1927.67.5_622
King, R. A., Broadbent, J. L., & Head, R. J. (1996). Absorption and excretion of the soy isoflavone genistein in rats. Journal of Nutrition, 126(1), 176–182. https://doi.org/10.1093/jn/126.1.176
King, R. A., & Bursill, D. B. (1998). Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. American Journal of Clinical Nutrition, 67(5), 867–872. https://doi.org/10.1093/ajcn/67.5.867
Křížová, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019). Isoflavones. In Molecules (Vol. 24, Issue 6). MDPI AG. https://doi.org/10.3390/molecules24061076
Kuiper, G. G. J. M., Kester, M. H. A., Peeters, R. P., & Visser, T. J. (2005). Biochemical Mechanisms of Thyroid Hormone Deiodination. Thyroid, 15(8), 787–798. https://doi.org/10.1089/thy.2005.15.787
Kuiper, G. G. J. M., Lemmen, J. G., Carlsson, B., Corton, J. C., Safe, S. H., van der Saag, P. T., van der Burg, B., & Gustafsson, J. Å. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology, 139(10), 4252–4263. https://doi.org/10.1210/endo.139.10.6216
Kulling, S. E., Honig, D. M., Simat, T. J., & Metzler, M. (2000). Oxidative in vitro metabolism of the soy phytoestrogens daidzein and genistein. Journal of Agricultural and Food Chemistry, 48(10), 4963–4972. https://doi.org/10.1021/jf000524i
Lee, A., Beaubernard, L., Lamothe, V., & Bennetau-Pelissero, C. (2019). New evaluation of isoflavone exposure in the french population. Nutrients, 11(10), 1–24. https://doi.org/10.3390/nu11102308
Lee, H.-R., Kim, T.-H., & Choi, K.-C. (2012). Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Laboratory Animal Research, 28(2), 71. https://doi.org/10.5625/lar.2012.28.2.71
Leyland-Jones, B., Gray, K. P., Abramovitz, M., Bouzyk, M., Young, B., Long, B., Kammler, R., Dell’Orto, P., Biasi, M. O., Thürlimann, B., Harvey, V., Neven, P., Arnould, L., Maibach, R., Price, K. N., Coates, A. S., Goldhirsch, A., Gelber, R. D., Pagani, O., … Group, B. I. G. 1-98 C. (2015). ESR1 and ESR2 polymorphisms in the BIG 1-98 trial comparing adjuvant letrozole versus tamoxifen or their sequence for early breast cancer. Breast Cancer Research and Treatment, 154(3), 543–555. https://doi.org/10.1007/s10549-015-3634-6
Lozovaya, V. v., Lygin, A. v., Ulanov, A. v., Nelson, R. L., Daydé, J., & Widholm, J. M. (2005). Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Science, 45(5), 1934–1940. https://doi.org/10.2135/cropsci2004.0567
Markovits, J., Junqua, S., Goldwasser, F., Venuat, A.-M., Luccioni, C., Beaumatin, J., Saucier, J.-M., Bernheim, A., & Jacquemin-Sablon, A. (1995). Genistein resistance in human leukaemic CCRF-CEM cells: Selection of a diploid cell line with reduced DNA topoisomerase II β isoform. Biochemical Pharmacology, 50(2), 177–186. https://doi.org/https://doi.org/10.1016/0006-2952(95)00131-I
Messina, M., Nagata, C., & Wu, A. H. (2006). Estimated Asian adult soy protein and isoflavone intakes. Nutrition and Cancer, 55(1), 1–12. https://doi.org/10.1207/s15327914nc5501_1
Molteni, A., Warpeha, R. L., Brizio Molteni, L., & Fors, E. M. (1981). Estradiol Receptor-binding Protein in Head and Neck Neoplastic and Normal Tissue. Archives of Surgery, 116(2), 207–210. https://doi.org/10.1001/archsurg.1981.01380140053012
Mullur, R., Liu, Y. Y., & Brent, G. A. (2014). Thyroid hormone regulation of metabolism. Physiological Reviews, 94(2), 355–382. https://doi.org/10.1152/physrev.00030.2013
Nakamura, Y., Ohsawa, I., Goto, Y., Tsuji, M., Oguchi, T., Sato, N., Kiuchi, Y., Fukumura, M., Inagaki, M., & Gotoh, H. (2017). Soy isoflavones inducing overt hypothyroidism in a patient with chronic lymphocytic thyroiditis: a case report. Journal of Medical Case Reports, 11(1), 253. https://doi.org/10.1186/s13256-017-1418-9
Nielsen, I. L. F., & Williamson, G. (2007). Review of the factors affecting bioavailability of soy isoflavones in humans. Nutrition and Cancer, 57(1), 1–10. https://doi.org/10.1080/01635580701267677
Pan, W., Ikeda, K., Takebe, M., & Yamori, Y. (2001). Genistein, daidzein and glycitein inhibit growth and DNA synthesis of aortic smooth muscle cells from stroke-prone spontaneously hypertensive rats. Journal of Nutrition, 131(4), 1154–1158. https://doi.org/10.1093/jn/131.4.1154
Paterni, I., Granchi, C., & Minutolo, F. (2017). Risks and benefits related to alimentary exposure to xenoestrogens. Critical Reviews in Food Science and Nutrition, 57(16), 3384–3404. https://doi.org/10.1080/10408398.2015.1126547
Patisaul, H. B. (2017). Endocrine disruption by dietary phyto-oestrogens: Impact on dimorphic sexual systems and behaviours. Proceedings of the Nutrition Society, 76(2), 130–144. https://doi.org/10.1017/S0029665116000677
Pirahanchi, Y., Toro, F., & Jialal, I. (2021). Physiology, Thyroid Stimulating Hormone. StatPearls Publishing, Treasure Island (FL). http://europepmc.org/abstract/MED/29763025
Popa, D.-S., & Rusu, M. E. (2017). Isoflavones: Vegetable Sources, Biological Activity, and Analytical Methods for Their Assessment. Superfood and Functional Food - The Development of Superfoods and Their Roles as Medicine. https://doi.org/10.5772/66531
Portulano, C., Paroder-Belenitsky, M., & Carrasco, N. (2014). The Na+/I- Symporter (NIS): Mechanism and medical impact. Endocrine Reviews, 35(1), 106–149. https://doi.org/10.1210/er.2012-1036
Radović, B., Mentrup, B., & Köhrle, J. (2006). Genistein and other soya isoflavones are potent ligands for transthyretin in serum and cerebrospinal fluid. British Journal of Nutrition, 95(6), 1171–1176. https://doi.org/10.1079/bjn20061779
Rendle, K. A., Abramson, C. M., Garrett, S. B., Halley, M. C., & Dohan, D. (2019). Beyond exploratory: A tailored framework for designing and assessing qualitative health research. BMJ Open, 9(8). https://doi.org/10.1136/bmjopen-2019-030123
Renko, K., Schäche, S., Hoefig, C. S., Welsink, T., Schwiebert, C., Braun, D., Becker, N. P., Köhrle, J., & Schomburg, L. (2015). An Improved Nonradioactive Screening Method Identifies Genistein and Xanthohumol as Potent Inhibitors of Iodothyronine Deiodinases. Thyroid, 25(8), 962–968. https://doi.org/10.1089/thy.2015.0058
Rhoden, K. J., Cianchetta, S., Duchi, S., & Romeo, G. (2008). Fluorescence quantitation of thyrocyte iodide accumulation with the yellow fluorescent protein variant YFP-H148Q/I152L. Analytical Biochemistry, 373(2), 239–246. https://doi.org/10.1016/j.ab.2007.10.020
Rizzo, G., & Baroni, L. (2018). Soy, soy foods and their role in vegetarian diets. In Nutrients (Vol. 10, Issue 1). MDPI AG. https://doi.org/10.3390/nu10010043
Roepke, T. K., King, E. C., Reyna-Neyra, A., Paroder, M., Purtell, K., Koba, W., Fine, E., Lerner, D. J., Carrasco, N., & Abbott, G. W. (2009). Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nature Medicine, 15(10), 1186–1194. https://doi.org/10.1038/nm.2029
Rubio, I. G. S., & Medeiros-Neto, G. (2009). Mutations of the thyroglobulin gene and its relevance to thyroid disorders. Current Opinion in Endocrinology, Diabetes and Obesity, 16(5), 373–378. https://doi.org/10.1097/MED.0b013e32832ff218
Rüfer, C. E., Bub, A., Möseneder, J., Winterhalter, P., Stürtz, M., & Kulling, S. E. (2008). Pharmacokinetics of the soybean isoflavone daidzein in its aglycone and glucoside form: A randomized, double-blind, crossover study. American Journal of Clinical Nutrition, 87(5), 1314–1323. https://doi.org/10.1093/ajcn/87.5.1314
Santin, A. P., & Furlanetto, T. W. (2011). Role of estrogen in thyroid function and growth regulation. Journal of Thyroid Research, 2011. https://doi.org/10.4061/2011/875125
Sarasquete, C., Úbeda-Manzanaro, M., & Ortiz-Delgado, J. B. (2018). Toxicity and non-harmful effects of the soya isoflavones, genistein and daidzein, in embryos of the zebrafish, Danio rerio. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 211(March), 57–67. https://doi.org/10.1016/j.cbpc.2018.05.012
Sathyapalan, T., Manuchehri, A. M., Thatcher, N. J., Rigby, A. S., Chapman, T., Kilpatrick, E. S., & Atkin, S. L. (2011). The effect of soy phytoestrogen supplementation on thyroid status and cardiovascular risk markers in patients with subclinical hypothyroidism: A randomized, double-blind, crossover study. Journal of Clinical Endocrinology and Metabolism, 96(5), 1442–1449. https://doi.org/10.1210/jc.2010-2255
Setchell, K. D. R., Brown, N. M., Desai, P., Zimmer-Nechemias, L., Wolfe, B. E., Brashear, W. T., Kirschner, A. S., Cassidy, A., & Heubi, J. E. (2001). Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. Journal of Nutrition, 131(4 SUPPL.), 1362–1375. https://doi.org/10.1093/jn/131.4.1362s
Setchell, K. D. R., Brown, N. M., Zimmer-Nechemias, L., Brashear, W. T., Wolfe, B. E., Kirschner, A. S., & Heubi, J. E. (2002). Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. American Journal of Clinical Nutrition, 76(2), 447–453. https://doi.org/10.1093/ajcn/76.2.447
Sharma, S., Kaur, M., Goyal, R., & Gill, B. S. (2014). Physical characteristics and nutritional composition of some new soybean (Glycine max (L.) Merrill) genotypes. Journal of Food Science and Technology, 51(3), 551–557. https://doi.org/10.1007/s13197-011-0517-7
Simpson, E. R. (2003). Sources of estrogen and their importance. Journal of Steroid Biochemistry and Molecular Biology, 86(3–5), 225–230. https://doi.org/10.1016/S0960-0760(03)00360-1
Šošić-Jurjević, B., Filipović, B., Wirth, E. K., Živanović, J., Radulović, N., Janković, S., Milošević, V., & Köhrle, J. (2014). Soy isoflavones interfere with thyroid hormone homeostasis in orchidectomized middle-aged rats. Toxicology and Applied Pharmacology, 278(2), 124–134. https://doi.org/10.1016/j.taap.2014.04.018
Vincent, A., & Fitzpatrick, L. A. (2000). Soy isoflavones: Are they useful in menopause? Mayo Clinic Proceedings, 75(11), 1174–1184. https://doi.org/10.4065/75.11.1174
Watanabe, S., Yamaguchi, M., Sobue, T., Takahashi, T., Miura, T., Arai, Y., Mazur, W., Wähälä, K., & Adlercreutz, H. (1998). Pharmacokinetics of Soybean Isoflavones in Plasma, Urine and Feces of Men after Ingestion of 60 g Baked Soybean Powder (Kinako). The Journal of Nutrition, 128(10), 1710–1715. https://doi.org/10.1093/jn/128.10.1710
Zaheer, K., & Humayoun Akhtar, M. (2017). An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Critical Reviews in Food Science and Nutrition, 57(6), 1280–1293. https://doi.org/10.1080/10408398.2014.989958
Zhang, Y., Wang, G. J., Song, T. T., Murphy, P. A., & Hendrich, S. (1999). Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity. Journal of Nutrition, 129(5), 957–962. https://doi.org/10.1093/jn/129.5.957
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Gonzalo Ogliari Dal Forno; Marco Aurélio Romano; Renata Marino Romano

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.