Piceatannol: a natural stilbene with a broad spectrum of biological activities





Estilbene; Resveratrol; Piceatannol; Biological activits


Piceatannol (trans-3,3,4,5-tetrahydroxystilbene) is a structural analogue related to resveratrol, belonging to the stilbene group. It is found in natural sources such as almonds, peanuts, teas, berries, and passion fruit, but mainly in grapes and in the seeds of passion fruits. Studies have shown a range of health-promoting biological properties for piceatannol, with emphasis for antioxidant, anti-inflammatory, and anticancer potential. Although resveratrol has been the stilbene most known and studied, studies have shown that piceatannol is found in higher amounts than resveratrol in several natural plant sources, and, in addition, due to the presence of the additional hydroxyl group in the 3' position in its structure, has shown some biological activities superior to those of resveratrol. In view of this, in this study a systematic literature review was carried out on the main chemical characteristics, natural sources and biological properties of piceatannol. Thus, this study will contribute and encourage the dissemination of knowledge and development of new studies about this natural compound potentially useful for human health.


Arai, D., Kataoka, R., Otsuka, S., Kawamura, M., Maruki-Uchida, H., Sai, M., Ito, T., & Naka, Y. (2016) Piceatannol is superior to resveratrol in promoting neural stem cell differention into astrocytes. Journal Food e Function, 7, 4432-4441.

Algandaby, M. M., & Al-Sawahli, M. (2021) Augmentation of anti-proliferative, pro-apoptotic and oxidant profiles induced by piceatannol in human breast carcinoma MCF-7 cells using zein nanostructures. Biomedicine & Pharmacotherapy, 138, 111409.

Avendaño-Godoya, J., Ortega, E., Urrutia, M., Escobar-Avello, D., Luengo, J., Baer, D. V., Mardones, C., & Gómez-Gaete, C. (2022) Prototypes of nutraceutical products from microparticles loaded with stilbenes extracted from grape cane. Food and Bioproducts Processing, 134, 19–29.

Banik, K., Ranaware, A. M., Harasha, C., Netesh, T., Girisa, S., Deshpande, V., Fan, F., Nalawade, S. P., Sethe, G., & Kunnumakkara, A. B. (2020) Piceatannol: A natural stilbene for the prevention and treatment of câncer. Pharmacological Research, 153, 104-135.

Baseggio, A. M., Kido, L. A., Viganó, J., Carneiro, M. J., Lamas, C. A., Martínez, J., Sawaya, A. C. H. F., Cagnon, V. H. A., & Júnior, M. R. M. (2022) Systemic antioxidant and anti-inflammatory effects of yellow passion fruit bagasse extract during prostate cancer progression. Jounal Food Biochemistry, 46, 13885.

Benbouguerra, N., Hornedo-Ortega, R., Garcia, F., Khawand, T. E., Saucier, C., & Richard, T. (2021) Stilbenes in grape berries and wine and their potential role as anti-obesity agents: A review. Trends in Food Science & Technology, 112, 362-381.

Boue, S. M., Shih, B. Y., Burow, M. E., Eggleston, G., Lingle, S., Pan, Y., Daigle, K., & Bhatnagar, D. (2013) Postharvest Accumulation of Resveratrol and Piceatannol in Sugarcane with Enhanced Antioxidant Activity. Journal of Agricultural and Food Chemistry, 61, 8412−8419.

Cardile, V., Lombardo, L., Spatafora, C., & Tringali, C. (2005) Chemo-enzymatic synthesis and cell-growth inhibition activity of resveratrol analogues. Journal Bioorganic Chemistry, 33, 22-33.

Conforto, E. C., Amaral, D. C., & Silva, S. L. Roteiro para revisão bibliográfica sistemática: aplicação no desenvolvimento de produtos e gerenciamento de projetos. 8° Congresso Brasileiro de Gestão de Desenvolvimento de Produto – CBGDP, 2011.

Dvorakova, M. & Landa, P. (2017) Anti-inflammatory activity of natural stilbenoids: a review. Pharmacological Research, 124, 126-145.

Ersan, E., Berning, J. C., Esquivel, P., Jiménez, V. M., Carle, R., May, B., Schweiggert, R., & Steingass, C.B. (2020) Phytochemical and mineral composition of fruits and seeds of wild-growing Bactris guineensis (L.) H.E. Moore palms from Costa Rica. Journal of Food Composition and Analysis, 94, 1-11.

Fan, T., Zhang, J., Cao, J., Xia, M., Wang, T., & Cao, S. (2022) Effects of resveratrol treatment on quality and antioxidant properties of postharvest strawberry fruit. Journal of food Biochemistry, 1-10. DOI: 10.1111/jfbc.14176

Ferrigni, N. R., McLaughlin, J. L., Powell, R. G., & Jr, C. R. S. (1984) Use of potato disc and brine shrimp bioassays to detect activity and isolate piceatannol as the antileukemic principle from the seeds of Euphorbia lagascae. Journal Nat. Prod., 47 (2), 347-352.

Jiang, L., Wang, Z., Wang, X., Wang, S., Wang, Z., & Liu, Y. (2020) Piceatannol exhibits potential food-drug interactions through the inhibition of human UDP-glucuronosyltransferase (UGT) in Vitro. Toxicology in Vitro, 67, 104890.

Kawakami, S., Kinoshita, Y., Maruki-Uchida, H., Yanae, K., Sai, M., & Ito, T. (2014) Piceatannol and Its Metabolite, Isorhapontigenin, Induce SIRT1 Expression in THP-1 Human Monocytic Cell Line. Journal Nutrients, 6, 4794-4804.

Kershaw, J., & Kim, K. H. (2017) Therapeutic potencial of piceatannol, a natural stilbene, in metabolic diseases: a review. Jornal Med. Food, 20, 427-438.

Kido, L. A., Hahm, E., Kim, S., Baseggio, A. M., Cagnon, V. H., Singh, S. V., & Maróstica Jr, M. R. (2020) Prevention of Prostate Cancer in Transgenic Adenocarcinoma of the Mouse Prostate Mice by Yellow Passion Fruit Extract and Antiproliferative Effects of Its Bioactive Compound Piceatannol. Jounal Cancer Prev., 25(2), 87-99.

King, E. E., King, T. I., Godson, D., & Mannin, L. (1956) The chemistry of extractives from hardwoods. The occurrence of 3,4,3´,5´-tetrahydroxy and 3,4,5,3´,5´-pentahydroxy-stilbene in Vouacapoua species. Journal of Chemical Society, 4477-4480.

Know, J.Y., Kershaw, J., Chen, C., Komanetsky, S.M., Zhu, Y., Guo, X., Myer, P.R., Applegate, B., & Kim, K. (2022) Piceatannol antagonizes lipolysis by promoting autophagy-lysosome-dependent degradation of lipolytic protein clusters in adipocytes. Journal of Nutritional Biochemistry, 105, 108998.

Ku, K., Chang, P., Chang, Y., & Lien, C. (2005) Production of Stilbenoids from the Callus of Arachis hypogaea: a Novel Source of the Anticancer Compound Piceatannol. Journal of Agricultural and Food Chemistry, 53 (10), 3877–3881.

Kukreja, A., Wadhwa, N., & Tiwari, A. (2014) Therapeutic Role of Resveratrol and Piceatannol in Disease Prevention. Journal of Blood Disorders & Transfusion, 5, 1-6.

Siedlecka-Kroplewska, k., Ślebioda, T., & Kmieć, Z. (2019) Induction of autophagy, apoptosis and aquisition of resistance in response to piceatannol toxicity in MOLT-4 human leukemia cells. Toxicology in Vitro, 59, 12-25.

Lai, T. N. H., André, C. M., Chirinos, R., Nguyen, T. B. T., Larondelle, I., & Rogez, H. (2014) Optimisation of extraction of piceatannol from Rhodomyrtus tomentosa seeds using response surface methodology. Separation and Purification Technology, 134, 139-146.

Leal, O. P., Barrero, C. A., & Merali, S. (2017) Pharmacological stimulation of nuclear factor (erythroidderived 2)-like 2 translation activates antioxidant responses. Journal Biological Chemistry, 34, 14108-14121.

Lee, C. H., Yang, H., Park, J. H. Y., Kim, J. & Lee, K. W. (2022) Piceatannol, a metabolite of resveratrol, attenuates atopic dermatitis by targeting Janus kinase 1. Phytomedicine, 99, 153981.

Lelákova, V., Smejkal, K., Fakubczyk, K., Veselý, O., Landa, P., Václavík, J., Bobál, P., Pízová, H., Temml, V., Steinacher, T., Schuster, D., Granica, S., Hanáková, Z., & Hosek, J. (2019) Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food Chemistry, 285, 431-440.

Matsui, Y., Sugiyama, K., Kamei, M., Takahashi, T., Suzuki, T., Katagata, Y., & Ito, T. (2010) Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis. Journal Agric. Food Chemistry, 58, 11112–11118.

Mizusaki, A., Nishi, K., Nishiwaki, H., Ishida, M., Tamamoto, T., Sugahar, T. (2017) Suppressive effect of ethanol extract from passion fruit seeds on IgE production. Journal of Functional Foods, 32, 176-184.

Osamudiamen, P. M., Oluremi, B. B., Oderinlo, O. O., & Aiyellagbe, O. O. (2020) Trans-resveratrol, piceatannol and gallic acid: Potent polyphenols isolated from Mezoneuron benthamianum effective as anticaries, antioxidant and cytotoxic agents. Scientific African, 7.

Pan, Z., Ning, D., Fu, Y., Li, D., Xie, Y., Yu, L., & Li, L. (2020) Preparative Isolation of Piceatannol Derivatives from Passion Fruit (Passiflora edulis) Seeds by High-Speed Countercurrent Chromatography Combined with High-Performance Liquid Chromatography and Screening for α Glucosidase Inhibitory Activities. Journal of Agricultural and Food Chemistry, 68 (6), 1555−1562.

Pannu, N., & Bhatnagar, A. (2019) Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Journal Biomedicine e Pharmacotherapy, 109, 2237-2251.

Park, S., Han, Y., Jo, H., Lee, K. W., & Song Y. S. (2021) Piceatannol Is Superior to Resveratrol at Suppressing Adipogenesis in Human Visceral Adipose-Derived Stem Cells. Plants, 10 (2), 366.

Potter, G. A., Patterson, L. H., Wanogho, E., Perry, P. J., Butler, P. C., Ijaz, T., Ruparelia, K. C., Lamb, J. H., Farmer, P. B., Stanley, L. A., & Burke, M. D. (2002) The cancer preventative agent resveratrol is converted- to the antic, p.ancer agent piceatannol by the cytochrome P450 enzyme CYP1B. British Journal of Cancer, 86, 774-778.

Rimando, A. M., Kalt, W., Magee, J. B., Dewey, J., & Ballington, J. R. (2004) Resveratrol, pterostilbene, and piceatannol in vaccinium berries. Journal of agricultural and food chemistry, 52 4713-4719.

Robertson, I., Hau, T. W., Sami, F., Ali, M. S., Badgujar, V., Murtuja, S., Hasnain, M. S., Khan, A., Majeed, S., & Ansari, M. T. (2022) The science of resveratrol, formulation, pharmacokinetic barriers and its chemotherapeutic potential. International Journal of Pharmaceutics, 618, 1-11.

Saéz, V., Pastene, E., Vergara, C., Mardones, C., Hermosín-Gutiérrez, i., Gómez-Alonso, S., Gómez, M. V., Theoduloz, C., Riquelme, S., & Baer, D. V. (2018) Oligostilbenoids in Vitis vinifera L. Pinot Noir grape cane extract: Isolation, characterization, in vitro antioxidant capacity and anti-proliferative effect on cancer cells. Food Chemistry, 265, 101-110.

Sato, A., Tagai, N., Ogino, Y., Uozumi, H., Kawakami, S., Yamamoto, T., Tanuma, S., Maruki-Uchida, H., Mori, S., & Morita, M. (2022) Passion fruit seed extract protects beta-amyloid-induced neuronal cell death in a differentiated human neuroblastoma SH-SY5Y cell model. Food Science Nutrition, 10, 1461-1468.

Santos, L. C., Mendiola, J. A., Sánchez-Camrgo, A. D. P., Álvarez-Rivera, G., Viganó, J., Cifuentes, A., Ibáñez E., & Martíinez, J. (2021) Selective Extraction of Piceatannol from Passiflora edulis by-Products: Application of HSPs Strategy and Inhibition of Neurodegenerative Enzymes. International Journal Molecular Science, 22, 6248.

Santos, V. S., Nascimento, T. V., Felipe, J. L., Boaretto, A. G., Damasceno-Junior, G. A., Silva, D. B., Toffoli-Kadri, M. C., & Carollo, C. A. (2017) Nutraceutical potential of Byrsonima cydoniifolia fruits based on chemical composition, anti-inflammatory, and antihyperalgesic activities. Food Chemistry, 237, 240–246.

Setoguchi, Y., Oritani, Y., Ito, R., Inagaki, H., Maruki-Uchida, H., Ichiyanagi, T., & Ito, T. (2014) Absorption and Metabolism of Piceatannol in Rats. Journal of Agricultural and Food Chemistry, 62, 2541-2548.

Shi, Y., Zhao, X., Wang, C., Wang, Y., Zhang, S., Li, P., Feng, X., Jin, B., Yuan, M., Cui, S., Sun, Y., Zhang, B., Sun, S., Jin, X., Wang, H., & Zhao, G. (2020) Ultrafast Nonadiabatic Photoisomerization Dynamics Mechanism for the UV Photoprotection of Stilbenoids in Grape Skin. Chemistry An Asian Journal, 15, 1478–1483.

Shrestha, A., Pandey, R. P., & Sohng, J. K. (2019) Biosynthesis of resveratrol and piceatannol in engineered microbial strains: achievements and perspectives. Applied Microbiology and Biotechnology, 103, 2959–2972.

Shruthi, P. A., Pushpadass H. A., Franklin, M. E. E., Batulla S. N., & Naik, N. L. (2020) Resveratrol-loaded proniosomes: Formulation, characterization and fortification. LWT – Food Science and Technology, 134, 110127. DOI: 10.1016/j.lwt.2020.110127

Silva, C., Câmara, J. S., & Perestrelo, R. (2021) A high-throughput analytical strategy based on QuEChERS-dSPE/ HPLC–DAD–ESI-MSn to establish the phenolic profile of tropical fruits. Journal of Food Composition and Analysis, 98, 1-7.

Viñas, P., Campillo, N., Martínez-Castillo, N., & Hernández-Córdoba, M. (2009) Solid-phase microextraction on-fiber derivatization for the analysis of some polyphenols in wine and grapes using gas chromatography–mass spectrometry. Journal of Chromatography A, 1216, 1279–1284.

Viñas, P., Martínez-Castilho, N., Campillo, N., & Hernández-Córdoba. (2011) Directly suspended droplet microextraction with in injection-port derivatization coupled to gas chromatography–mass spectrometry for the analysis of polyphenols in herbal infusions, fruits and functional foods. Journal of Chromatography A, 1218, 639–646.

Wijekoon, C., Netticadan, T., Siow Y.L., Sabra, A., Yu, L., Raj, P., & Prashar, S. (2022) Potential Associations among Bioactive Molecules, Antioxidant Activity and Resveratrol Production in Vitis vinifera Fruits of North America. Molecules, 27, 1-14. 6. DOI: 10.3390/ molecules27020336

Xie, L., & Bolling, B. W. (2014) Characterisation of stilbenes in California almonds (Prunus dulcis) by UHPLC–MS. Food Chemistry, 148, 300–306.

Yamamoto, T., Iwami, S., Aoyama, S., Uchida, H. M., Mori, S., Hiooka, R., Takahashi, K., Morita, M., & Shibata, S. (2019) Effect of piceatannol on circadian Per2 expression in vitro and in vivo. Journal of functional foods, 56, 49-56.

Yang, J. S., Tongson, J., Kim, K., & Park, Y. (2020) Piceatannol attenuates fat accumulation and oxidative stress in steatosis-induced HepG2 cells. Current Research in Food Science 3, 92–99.

Zachová, Z., Tříska, J., Vrchotová, N., Balík, J., Sajfrtová, M., & Sovová, H. (2018) Combining high-pressure methods for extraction of stilbenes from grape cane. The Journal of Supercritical Fluids, 142, 38-44.

Zomer, A. P. L., Rodrigues, C. A., Rotta, E. M., Junqueira, N. T. V., Visentainer, J. V., & Maldaner, L. (2022) An improved analytical strategy based on the QuEChERS method for piceatannol analysis in seeds of Passiflora species. Journal of Liquid Chromatography & Related Technologies, 45, 1-12.



How to Cite

ZOMER, A. P. L.; RODRIGUES, C. A. .; MALDANER, L. Piceatannol: a natural stilbene with a broad spectrum of biological activities. Research, Society and Development, [S. l.], v. 11, n. 9, p. e49211932221, 2022. DOI: 10.33448/rsd-v11i9.32221. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32221. Acesso em: 29 sep. 2022.



Exact and Earth Sciences