Statistical study of the growth kinetics and lipid content of microalgae cultivated in brackish media, using wastewater as a source of nutrients for bioenergetic purposes




Reuse; Brackish Water; Biotechnology; Biofuels; Biomass; Lipids.


The present work aimed to prove, statistically, the influence of the concentration of nutrients from fossil waters on the growth kinetics and intracellular lipid accumulation in microalgae. The species Chlorella sp., Scenedesmus acuminatus, Nannochloropsis sp., Monoraphidium contortum and Pediastrum tetras were studied, which were isolated from the semiarid region of the Brazilian northeast and cultivated in a mixture composed of brackish groundwater and effluent from septic tanks. From the crops, the kinetic parameters, dry biomass production and lipid content were analyzed, using the experimental planning for one factor as a tool, with the concentration of nutrients as an independent variable. The maximum growth velocity (μmax), generation time (tg), as well as the lipid content were the studied response variables. The results showed that the species with the greatest accumulation of lipids were Chlorella sp., with a lipid content of 81.20%, and Nannochloropsis sp. with 73.68%, being the most promising for bioenergetic purposes. Therefore, the concentration of nutrients from fossil effluents combined with the salinity of the medium acted directly on cell growth and lipid content, and such factors can be used as an artifice to enhance lipid production, aiming at the production of biofuels.

Author Biographies

Bruna da Silveira Guimarães, Universidade Federal de Campina Grande

Graduada em Engenharia Química pela Universidade Federal de Campina Grande, Paraíba, Brasil no ano de 2011, onde desde então vem atuando em projetos de pesquisa e extensão no Laboratório de Referência em Dessalinização (LABDES/UFCG). Possui mestrado em Engenharia Química pela UFCG, concluído no ano de 2016, na área de meio ambiente e biocombustíveis. Doutorado em Engenharia Química, concluído no ano de 2020, pela UFCG, na área de meio ambiente, produção de microalgas e biocombustíveis.

Kepler Borges França, Universidade Federal de Campina Grande

Engenheiro Químico pela Universidade Federal da Paraíba, concluiu seu doutorado na University of Kent at Canterbury na Inglaterra. Atualmente, é Professor Titular e pesquisador do Departamento de Engenharia Química na Universidade Federal de Campina Grande. Possui experiência na área da Engenharia Química, com ênfase em processos de membranas voltados para tratamentos de águas para consumo humano. Possui experiência em projetos com membranas de microfiltração, ultrafiltração, nanofiltração e osmose inversa para fins de purificação e dessalinização de águas.

João Alexandre Rodrigues Nascimento, Universidade Federal de Campina Grande

Graduando em Engenharia Química, na Universidade Federal de Campina Grande. Atua em pesquisa na área de produção de biomassa de microalgas para fins bioenergéticos.


Abdel-Raouf, N., Al-Homaidan, A. A., Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275.

Bellou, S., Baeshen, M., Elazzazy, A. M., Aggeli, D., Sayegh, F. (2014). Microalgal lipids biochemistry and biotechnological perspectives. Bioresource Technology, v. 288.

Bischoff, H. W, Bold, H. C. (1963). Some Soil Algae from Enchanted Rock and Related Algal Specie. Austin: University of Texas. (Phycological Studies IV, n. 6318). p. 1-95.

Carneiro, G. A., Silva, J. J. R., Oliveira, G. A., Pio, F. P. B. Uso de Microalgas para a Produção de Biodiesel. (2018). Research, Society and Development. v. 7. n. 5. P. 1-12.

Chew, K. W., Chia, S. R., Show, P. L., Yap, Y. J., Ling, T. C., Chang, J. S. (2018). Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, v. 0, p. 1-13.

Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnolo gy, v. 26, n. 3, p. 126-131.

Dahmani S., Zerrouki, D., Ramanna, L., Rawat, I., Bux, F. (2016). Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region. Bioresource Technology, v. 219, p. 749–752.

Folch, J., Less, M., Staley, G. H. (1957). A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. The Journal of Biological Chemistry, v. 226, p. 497-509.

Guillard, R. R. L., Lorenzen, C. J. (1972). Yelow-green algae with chlorophyllide. Journal Phycology, v. 8, p. 10-14.

Han, W., Jin, W., Li, Z., Wei, Y., He, Z., Chen, C., Qin, C., Chen, Y., Tu, R., Zhou, X. Cultivation of microalgae for lipid production using municipal wastewater. (2021). Process Safety and Environmental Protection. v. 155. p. 155-165.

Jiang, L., Luo, S., Fan, X., Yang, Z., Guo, R. (2011). Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Applied Energy, v. 88, n. 10, p. 3336–3341.

Kadir, W. N. A., Lam, M. K., Uemura, Y., Lim, J. W., Lee, K. T. (2018). Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review. Energy Conversion and Management, v. 171, n. May, p. 1416–1429.

Lee, E., Jalalizadeh, M., Zhang, Q. (2015). Growth kinetic models for microalgae cultivation: A review. Algal Research, v. 12, p. 497-512.

Mota, G. F., Sousa I. G., Oliveira A. L. B., Cavalcante A. L. G., Moreira, K. S., Cavalcante, F. T. T., Souza, J. E. S., Falcão, I. R. A., Rocha, T. G., Valério, R. B. R., Carvalho, S. C. F., Neto, F. S., Serpa, J. F., Lima, R. K. C., Souza, M. C. M., Santos, J. C. S. (2022). Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. Algal Research, v. 62, 102616.

Pancha, I., Chokshi, K., Maurya, R., Trivedi, K., Patidar, S. K., Ghosh, A., Mishra, S. (2015). Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, v. 189, p. 341-348.

Qiao, T., Zhao, Y., Zhong, D., Yu, X. (2021). Hydrogen peroxide and salinity stress act synergistically to enhance lipids production in microalga by regulating reactive oxygen species and calcium. Algal Research, v. 53, Article 102017.

Razzak, S. A., Ali, S. A. M., Hossain, M. M., Delasa, H. (2017). Biological CO2 fixation with production of microalgae in wastewater – A review. Renewable and Sustainable Energy Reviews, v. 76, n. September 2015, p. 379–390.

Salama, E. S., Kurade, M. B., Abou-Shanab, R. A. I., El-Dalatony, M. M., Yang, I. S., Min, B., Jeon, B. H. (2017). Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable and Sustainable Energy Reviews, v. 79, n. July 2016, p. 1189–1211.

Schimidell, W., Borzani, W., Lima, U. A., Aquarone, E. (2001). Biotecnologia Industrial, Volume 2. 1ª ed. São Paulo: Editora Blucher. 560 p.

Sharma, Y. C., Singh, B., Korstad, J. (2011). A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel. Green Chemistry, v. 13, n. 11, p. 2993–3006.

Shuba, E. S., Kifle, D. (2018). Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review. Renewable and Sustainable Energy Reviews, v. 81, n. April 2016, p. 743-755.

Srivastava, G., Nishchal, Goud, V. V. (2017). Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047). Bioresource Technology, v. 242, p. 244-252.

Zhang, X., Tang, X., Wang, M., Zhang, W., Zhou, B., Wang, Y. J.(2017). Ros and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salinato enhanced UV-B radiation. Journal of Photochemistry & Photobiology, B: Biology, v. 173, p. 360-367.

Zhang, C., Li, S., Ho, S. (2021). Converting nitrogen and phosphorous wastewater into bioenergy using microalgae-bacteria consortia: A critical review. Bioresource Technology. v. 342. 126056.

Zhao, Y., Song, X., Zhao, P., Li, T., Xu, J., Yu, X. (2021). Role of melatonin in regulation of lipid accumulation, autophagy and salinity-induced oxidative stress in microalga Monoraphidium sp. QLY-1. Algal Research, v. 54, p. 1-9.

Zhu, B., Chen, G., Cao, X., Wei, D. (2017). Molecular characterization of CO2 sequestration and assimilation in microalgae and its biotechnological applications. Bioresource Technology, v. 244, p. 1207-1215.



How to Cite

GUIMARÃES, B. da S. .; FRANÇA, K. B. .; NASCIMENTO, J. A. R. .; DANTAS, C. P. . Statistical study of the growth kinetics and lipid content of microalgae cultivated in brackish media, using wastewater as a source of nutrients for bioenergetic purposes. Research, Society and Development, [S. l.], v. 11, n. 10, p. e16111032246, 2022. DOI: 10.33448/rsd-v11i10.32246. Disponível em: Acesso em: 2 oct. 2022.