Experimental and theoretical techniques applied to the study of organic corrosion inhibitors in acidic media

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.32321

Keywords:

Corrosion Inhibitors; Electrochemical Techniques; Quantum Chemical Calculations.

Abstract

Metallic materials are widely used in the industry as construction material for equipment and piping. Naturally, they undergo the wear by chemical and electrochemical reactions with or without mechanical stress known as corrosion, forming thermodynamically stable products. This phenomenon is serious and of great challenge in several sectors. Various approaches and methods have been rigorously studied and implemented to mitigate corrosion. One of the most common and effective measures to mitigate corrosion on metals and protect their surfaces is the use of corrosion inhibitors. In particular, some organic compounds excel in inhibiting corrosion of alloys and metals in acidic media. Most organic corrosion inhibitors are those that contain heteroatoms (nitrogen, sulfur and/or oxygen), functional groups, π electrons in double or triple bonds and/or aromatic rings. The inhibition efficiency and study of adsorption on the metallic surface of these compounds can be studied experimentally, as well as using quantum methods. This work provides a review of fundamental experimental (electrochemical impedance spectroscopy, potentiodynamic polarization and weight loss measurements) and quantum techniques for understanding the behavior of organic molecules as corrosion inhibitors, as well as the mechanism of inhibition in acidic media.

References

Abdelmalek, M., Barhoumi, A., Byadi, S., El Idrissi, M., Salah, M., Tounsi, A., . . . Zeroual, A. (2021). Corrosion inhibition performance of azelaic acid dihydrazide: a molecular dynamics and Monte Carlo simulation study. Journal of Molecular Modeling, 27(11), 331. doi: 10.1007/s00894-021-04955-2

Abdulazeez, I., Al-Hamouz, O. C., Khaled, M., & Al-Saadi, A. A. (2020). New imidazole-based dimers as potential inhibitors for mild steel corrosion in acidic media: Electrochemical and DFT evaluation. Materials and Corrosion 71(2), 292-299. doi:10.1002/maco.201911123

Abdulridha, A. A., Albo Hay Allah, M. A., Makki, S. Q., Sert, Y., Salman, H. E., & Balakit, A. A. (2020). Corrosion inhibition of carbon steel in 1 M H2SO4 using new Azo Schiff compound: Electrochemical, gravimetric, adsorption, surface and DFT studies. Journal of Molecular Liquids, 315, 113690. doi:10.1016/j.molliq.2020.113690

Ahmed, M. H. O., Al-Amiery, A. A., Al-Majedy, Y. K., Kadhum, A. A. H., Mohamad, A. B., & Gaaz, T. S. (2018). Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1 M hydrochloric acid. Results in Physics, 8, 728-733. doi: 10.1016/j.rinp.2017.12.039

Al-Amiery, A. A., Mohamad, A. B., Kadhum, A. A. H., Shaker, L. M., Isahak, W. N. R. W., & Takriff, M. S. (2022). Experimental and theoretical study on the corrosion inhibition of mild steel by nonanedioic acid derivative in hydrochloric acid solution. Scientific Reports, 12(1), 4705. doi:10.1038/s41598-022-08146-8

Al-Fakih, A. M., Abdallah, H. H., & Aziz, M. (2019). Experimental and theoretical studies of the inhibition performance of two furan derivatives on mild steel corrosion in acidic medium. Materials and Corrosion, 70(1), 135-148. doi: 10.1002/maco.201810221

Arockiasamy, P., Sheela, X. Q. R., Thenmozhi, G., Franco, M., Sahayaraj, J. W., & Santhi, R. J. (2014). Evaluation of Corrosion Inhibition of Mild Steel in 1 M Hydrochloric Acid Solution by Mollugo cerviana. International Journal of Corrosion, 2014, 679192. doi: 10.1155/2014/679192

Awad, M. K., Issa, R. M., & Atlam, F. M. (2009). Theoretical investigation of the inhibition of corrosion by some triazole Schiff bases. Materials and Corrosion, 60(10), 813-819. doi: 10.1002/maco.200905169

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913.

Behzadi, H., Roonasi, P., Momeni, M. J., Manzetti, S., Esrafili, M., Obot, I. B., . . . Morteza Mousavi-Khoshdel, S. (2015). A DFT study of pyrazine derivatives and their Fe complexes in corrosion inhibition process. Journal of Molecular Structure, 1086, 64-72. doi:10.1016/j.molstruc.2015.01.008

Bentiss, F., Traisnel, M., Gengembre, L., & Lagrenée, M. (1999). A new triazole derivative as inhibitor of the acid corrosion of mild steel: electrochemical studies, weight loss determination, SEM and XPS. Applied Surface Science, 152(3), 237-249. doi:10.1016/S0169-4332(99)00322-0

Berradja, A. (2019). Electrochemical Techniques for Corrosion and Tribocorrosion Monitoring: Methods for the Assessment of Corrosion Rates. Corrosion Inhibitors. IntechOpen. doi:10.5772/intechopen.86743

Besler, B. H., Merz Jr., K. M., & Kollman, P. A. (1990). Atomic charges derived from semiempirical methods. Journal of Computational Chemistry 11(4), 431-439. doi:10.1002/jcc.540110404

Bonanos, N., Steele, B. C. H., & Butler, E. P. (2005). Applications of Impedance Spectroscopy Impedance Spectroscopy. Impedance Spectroscopy: Theory, Experiment, and Applications, Second Edition (pp. 205-537). doi:10.1002/0471716243.ch4

Boussalah, N., Ghalem, S., El Kadiri, S., Hammouti, B., & Touzani, R. (2012). Theoretical study of the corrosion inhibition of some bipyrazolic derivatives: a conceptual DFT investigation. Research on Chemical Intermediates, 38(8), 2009-2023. doi: 10.1007/s11164-012-0522-0

Breneman, C. M., & Wiberg, K. B. (1990). Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. Journal of Computational Chemistry 11(3), 361-373. doi:10.1002/jcc.540110311

Brett, C. M. A. (2022). Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Molecules (Basel, Switzerland), 27(5), 1497. doi:10.3390/molecules27051497

Browning, D. R. (1986). Electrogravimetry Materials Characterization: ASM International. doi: 10.31399/asm.hb.v10.a0001742

Bultinck, P., Carbó-Dorca, R., & Langenaeker, W. (2003). Negative Fukui functions: New insights based on electronegativity equalization. Journal of Chemical Physics 118(10), 4349-4356. doi: 10.1063/1.1542875

Burke, K. (2012). Perspective on density functional theory. Journal of Chemical Physics 136(15), 150901. doi:10.1063/1.4704546

Canales, C. P. (2021). Electrochemical Impedance Spectroscopy and Its Applications. 21st Century Nanostructured Materials - Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture. London: IntechOpen. doi:10.5772/intechopen.101636

Cao, C. (1996). On electrochemical techniques for interface inhibitor research. Corrosion Science, 38(12), 2073-2082. doi:10.1016/S0010-938X(96)00034-0

Cao, K., Huang, W., Huang, X., & Pan, J. (2022). Imidazo [1,2-a] Pyrimidine Derivatives as Effective Inhibitor of Mild Steel Corrosion in HCl Solution: Experimental and Theoretical Studies. Frontiers in Materials. 9:843522. doi: 10.3389/fmats.2022.843522

Cao, Z., Tang, Y., Cang, H., Xu, J., Lu, G., & Jing, W. (2014). Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part II: Theoretical studies. Corrosion Science, 83, 292-298. doi:10.1016/j.corsci.2014.02.025

Chaouiki, A., Chafiq, M., Rbaa, M., Lgaz, H., Salghi, R., Lakhrissi, B., . . . Cho, Y. (2020). New 8-Hydroxyquinoline-Bearing Quinoxaline Derivatives as Effective Corrosion Inhibitors for Mild Steel in HCl: Electrochemical and Computational Investigations. Coatings 10(9), 811. doi:10.3390/coatings10090811

Check, C. E., Faust, T. O., Bailey, J. M., Wright, B. J., Gilbert, T. M., & Sunderlin, L. S. (2001). Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements. The Journal of Physical Chemistry A, 105(34), 8111-8116. doi: 10.1021/jp011945l

Chirlian, L. E., & Francl, M. M. (1987). Atomic charges derived from electrostatic potentials: A detailed study. Journal of Computational Chemistry 8(6), 894-905. doi:10.1002/jcc.540080616

Choi, W., Shin, H.-C., Kim, J. M., Choi, J.-Y., & Yoon, W.-S. (2020). Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. Journal of Electrochemical Science and Technology, 11(1), 1-13. doi:10.33961/jecst.2019.00528

D. Thompson, J., D. Xidos, J., M. Sonbuchner, T., J. Cramer, C., & G. Truhlar, D. (2002). More reliable partial atomic charges when using diffuse basis sets. PhysChemComm, 5(18), 117-134. doi:10.1039/B206369G

Dafali, A., Hammouti, B., Touzani, R., Kertit, S., Ramdani, A., & El Kacemi, K. (2002). Corrosion inhibition of copper in 3 per cent NaCl solution by new bipyrazolic derivatives. Anti-Corrosion Methods and Materials, 49(2), 96-104. doi: 10.1108/00035590210419335

Dawson, W., Degomme, A., Stella, M., Nakajima, T., Ratcliff, L. E., & Genovese, L. (2021). Density functional theory calculations of large systems: Interplay between fragments, observables, and computational complexity. WIREs Computational Molecular Science, e1574. doi:10.1002/wcms.1574

Dehdab, M., Shahraki, M., & Habibi-Khorassani, S. M. (2016). Theoretical study of inhibition efficiencies of some amino acids on corrosion of carbon steel in acidic media: green corrosion inhibitors. Amino Acids, 48(1), 291-306. doi:10.1007/s00726-015-2090-2

Delgado, M. C., García-Galvan, F. R., Llorente, I., Pérez, P., Adeva, P., & Feliu, S. (2017). Influence of aluminium enrichment in the near-surface region of commercial twin-roll cast AZ31 alloys on their corrosion behaviour. Corrosion Science, 123, 182-196. doi:10.1016/j.corsci.2017.04.027

Dkhireche, N., Galai, M., Ouakki, M., Rbaa, M., Ech-chihbi, E., Lakhrissi, B., & EbnTouhami, M. (2020). Electrochemical and theoretical study of newly quinoline derivatives as a corrosion inhibitors adsorption onmild steel in phosphoric acid media. Inorganic Chemistry Communications, 121, 108222. doi:10.1016/j.inoche.2020.108222

Dolabella, L. M. P., T. E. Santos, Matencio, T., Vasconcelos, W. L., & Lins, V. F. C. (2019). Inhibitory Effect of Ethanolic Extract of Propolis on Corrosion of Ferritic Stainless Steel in Chloride Media. Chemical and Biochemical Engineering Quarterly, 33, 213-219. doi: 10.15255/CABEQ.2018.1559

Dubey, S., Banerjee, S., Upadhyay, S. N., & Sharma, Y. C. (2017). Application of common nano-materials for removal of selected metallic species from water and wastewaters: A critical review. Journal of Molecular Liquids, 240, 656-677. doi:/10.1016/j.molliq.2017.05.107

Ebenso, E. E., Arslan, T., Kandemirli, F., Caner, N., & Love, I. (2010). Quantum chemical studies of some rhodanine azosulpha drugs as corrosion inhibitors for mild steel in acidic medium. International Journal of Quantum Chemistry, 110(5), 1003-1018. doi:10.1002/qua.22249

Esmailzadeh, S., Aliofkhazraei, M., Sarlak, H. J. P. o. M., & Surfaces, P. C. o. (2018). Interpretation of Cyclic Potentiodynamic Polarization Test Results for Study of Corrosion Behavior of Metals: A Review. Materials Science 54, 976-989. doi:10.1134/S207020511805026X

Feliu, S. (2020). Electrochemical Impedance Spectroscopy for the Measurement of the Corrosion Rate of Magnesium Alloys: Brief Review and Challenges. Metals 10(6), 775. doi:10.3390/met10060775

Feng, L., Ren, X., Feng, Y., Tan, B., Zhang, S., Li, W., & Liu, J. (2020). Self-assembly of new O- and S-heterocycle-based protective layers for copper in acid solution. Physical Chemistry Chemical Physics, 22(8), 4592-4601. doi:10.1039/C9CP06910K

Fukui, K. (1982). Role of Frontier Orbitals in Chemical Reactions. Science, 218(4574), 747-754. doi:10.1126/science.218.4574.747

Gabrielli, C. J. E. A. (2020). Once upon a time there was EIS. Electrochimica Acta, 331 (2020) 135324. doi:10.1016/j.electacta.2019.135324

Gad, E. A. M., Azzam, E. M. S., & Halim, S. A. (2018). Theoretical approach for the performance of 4-mercapto-1-alkylpyridin-1-ium bromide as corrosion inhibitors using DFT. Egyptian Journal of Petroleum, 27(4), 695-699. doi:10.1016/j.ejpe.2017.10.005

Gece, G. (2008). The use of quantum chemical methods in corrosion inhibitor studies. Corrosion Science, 50(11), 2981-2992. doi:10.1016/j.corsci.2008.08.043

Gece, G. (2015). Corrosion inhibition behavior of two quinoline chalcones: insights from density functional theory. Journal Corrosion Reviews. 33(3-4), 195-202. doi:10.1515/corrrev-2015-0028

Gece, G., & Bilgiç, S. (2009). Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media. Corrosion Science, 51(8), 1876-1878. doi:10.1016/j.corsci.2009.04.003

Gentil, V. (2014). Corrosão (6ª ed.). Rio de Janeiro: LTC.

Goyal, M., Kumar, S., Bahadur, I., Verma, C., & Ebenso, E. E. (2018). Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review. Journal of Molecular Liquids, 256, 565-573. doi:10.1016/j.molliq.2018.02.045

Haris, N. I. N., Sobri, S., Yusof, Y. A., & Kassim, N. K. (2021). An Overview of Molecular Dynamic Simulation for Corrosion Inhibition of Ferrous Metals. Metals 11(1), 46. doi:10.3390/met11010046

Hassan, K. H., Khadom, A. A., & Kurshed, N. H. (2016). Citrus aurantium leaves extracts as a sustainable corrosion inhibitor of mild steel in sulfuric acid. South African Journal of Chemical Engineering, 22, 1-5. doi:10.1016/j.sajce.2016.07.002

He, X., Mao, J., Ma, Q., & Tang, Y. (2018). Corrosion inhibition of perimidine derivatives for mild steel in acidic media: Electrochemical and computational studies. Journal of Molecular Liquids, 269, 260-268. doi:10.1016/j.molliq.2018.08.021

He, Z., & Mansfeld, F. (2009). Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy & Environmental Science, 2(2), 215-219. doi:10.1039/B814914C

Heaviside, O. (1894). Electrical Papers (2nd ed.).

Hernández, H. H., Reynoso, A. M. R., González, J. C. T., Morán, C. O. G., Hernández, J. G. M., Ruiz, A. M., . . . Cruz, R. O. (2020). Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels. Electrochemical Impedance Spectroscopy. London: IntechOpen. doi:10.5772/intechopen.94470

Heusler, K. E., Landolt, D., & Trasatti, S. (1989). Electrochemical corrosion nomenclature (Recommendations 1988). Pure and Applied Chemistry. 61(1), 19-22. doi:10.1351/pac198961010019

Hirshfeld, F. L. (1977). Bonded-atom fragments for describing molecular charge densities. Theoretica Chimica Acta., 44(2), 129-138. doi:10.1007/BF00549096

Hollingsworth, S. A., & Dror, R. O. (2018). Molecular Dynamics Simulation for All. Neuron, 99(6), 1129-1143. doi:10.1016/j.neuron.2018.08.011

Honarvar Nazari, M., Shihab, M. S., Havens, E. A., & Shi, X. (2020). Mechanism of corrosion protection in chloride solution by an apple-based green inhibitor: experimental and theoretical studies. Journal of Infrastructure Preservation and Resilience, 1(1), 7. doi:10.1186/s43065-020-00007-w

Huong, D. Q., Lan Huong, N. T., Anh Nguyet, T. T., Duong, T., Tuan, D., Thong, N. M., & Nam, P. C. (2020). Pivotal Role of Heteroatoms in Improving the Corrosion Inhibition Ability of Thiourea Derivatives. ACS omega, 5(42), 27655-27666. doi:10.1021/acsomega.0c04241

Idir, B., & Kellou-Kerkouche, F. (2018). Experimental and Theoretical Studies on Corrosion Inhibition Performance of Phenanthroline for Cast Iron in Acid Solution. Journal of Electrochemical Science and Technology, 9(4), 260-275. doi:10.5229/JECST.2018.9.4.260

Jensen, F. (2002). Polarization consistent basis sets. III. The importance of diffuse functions. Journal of Chemical Physics 117(20), 9234-9240. doi: 10.1063/1.1515484

Johansson, A. (1988). The development of the titration methods: some historical annotations. Analytica Chimica Acta 206, 97-109. doi:10.1016/S0003-2670(00)80834-X

John, S., & Joseph, A. (2013). Quantum chemical and electrochemical studies on the corrosion inhibition of aluminium in 1 N HNO3 using 1,2,4-triazine. Materials and Corrosion 64(7), 625-632. doi:10.1002/maco.201206782

Junaedi, S., Al-Amiery, A. A., Kadihum, A., Kadhum, A. A. H., & Mohamad, A. B. (2013). Inhibition effects of a synthesized novel 4-aminoantipyrine derivative on the corrosion of mild steel in hydrochloric acid solution together with quantum chemical studies. International Journal of Molecular Sciences, 14(6), 11915-11928. doi:10.3390/ijms140611915

Keith B. Oldham, J. C. M., Alan M. Bond. (2011). Electrochemical Science and Technology: Fundamentals and Applications. Hoboken, Nova Jersey, EUA: John Wiley & Sons, Ltd.

Khadom, A. A., Abd, A. N., & Ahmed, N. A. (2018). Potassium Iodide as a Corrosion Inhibitor of Mild Steel in Hydrochloric Acid: Kinetics and Mathematical Studies. Journal of Bio- and Tribo-Corrosion, 4(2), 17. doi:10.1007/s40735-018-0133-4

Kiew, L.-V., Chang, C.-Y., Huang, S.-Y., Wang, P.-W., Heh, C.-H., Liu, C.-T., . . . Chang, C.-C. (2021). Development of flexible electrochemical impedance spectroscopy-based biosensing platform for rapid screening of SARS-CoV-2 inhibitors. Biosensors and Bioelectronics, 183, 113213. doi:10.1016/j.bios.2021.113213

Ko, S.-J., Choi, S.-R., Hong, M.-S., Kim, W.-C., & Kim, J.-G. (2021). Effect of Imidazole as Corrosion Inhibitor on Carbon Steel Weldment in District Heating Water. Materials 14(16), 4416. doi:10.3390/ma14164416

Laschuk, N. O., Easton, E. B., & Zenkina, O. V. (2021). Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC advances, 11(45), 27925-27936. doi:10.1039/d1ra03785d

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/PhysRevB.37.785

Li, X., Deng, S., Fu, H., & Li, T. (2009). Adsorption and inhibition effect of 6-benzylaminopurine on cold rolled steel in 1.0M HCl. Electrochimica Acta, 54(16), 4089-4098. doi:10.1016/j.electacta.2009.02.084

Loganathan, K. T., Thimmakondu, V. S., S, N., & R, N. (2021). Corrosion inhibitive evaluation and DFT studies of 2-(Furan-2-yl)-4,5-diphenyl-1H-imidazole on mild steel at 1.0M HCl. Journal of the Indian Chemical Society, 98(9), 100121. doi:10.1016/j.jics.2021.100121

Loto, R. T. (2017). Corrosion polarization behaviour and inhibition of S40977 stainless steel in benzosulfonazole/3 M H2SO4 solution. South African Journal of Chemical Engineering, 24, 148-155. doi:10.1016/j.sajce.2017.09.001

Ma, I. A. W., Ammar, S., Kumar, S. S. A., Ramesh, K., & Ramesh, S. (2022). A concise review on corrosion inhibitors: types, mechanisms and electrochemical evaluation studies. Journal of Coatings Technology and Research, 19(1), 241-268. doi: 10.1007/s11998-021-00547-0

Macdonald, D. D. (2006). Reflections on the history of electrochemical impedance spectroscopy. Electrochimica Acta, 51(8), 1376-1388. doi:10.1016/j.electacta.2005.02.107

Madsen, E. R. (1958). The development of titrimetric analysis till 1806: GEC Gad.

Marcus, P. (2003). Introduction to the Fundamentals of Corrosion. Corrosion: Fundamentals, Testing, and Protection, Vol 13A, ASM Handbook, ASM International, 2003, p 3-4.

Mardirossian, N., & Head-Gordon, M. (2017). Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Molecular Physics, 115(19), 2315-2372. doi:10.1080/00268976.2017.1333644

Marinescu, M. (2019). Recent advances in the use of benzimidazoles as corrosion inhibitors. BMC Chemistry, 13(1), 136. doi:10.1186/s13065-019-0655-y

Marzorati, S., Verotta, L., & Trasatti, S. P. (2019). Green Corrosion Inhibitors from Natural Sources and Biomass Wastes. Molecules 24(1), 48. doi:10.3390/molecules24010048

Mazumder, M. A. J. (2020). Global Impact of Corrosion: Occurrence, Cost and Mitigation. Global Journal Engineering Science, 5, 1-5. doi:10.33552/GJES.2020.05.000618

McCafferty, E. (2010a). Getting Started on the Basics. In E. McCafferty (Ed.), Introduction to Corrosion Science (pp. 13-31). New York, NY: Springer New York.

McCafferty, E. (2010b). Societal Aspects of Corrosion. In E. McCafferty (Ed.), Introduction to Corrosion Science (pp. 1-11). New York, NY: Springer New York.

Morgon, N. H., & Coutinho, K. R. (2007). Métodos de química teórica e modelagem molecular: Editora Livraria da Física.

Mulliken, R. S. (1955). Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations. Journal of Chemical Physics 23(12), 2338-2342. doi:10.1063/1.1741876

Mulliken, R. S. (1955). Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. Journal of Chemical Physics 23(10), 1833-1840. doi:10.1063/1.1740588

Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations (2005). Retrieved May 6, 2022, from https://store.ampp.org/sp0775-2013-formerly-rp0775-2

Najafi, B., Bonomi, P., Casalegno, A., Rinaldi, F., & Baricci, A. (2020). Rapid Fault Diagnosis of PEM Fuel Cells through Optimal Electrochemical Impedance Spectroscopy Tests. Energies 13(14), 3643. doi:10.3390/en13143643

Nernst, W. (1894). Methode zur Bestimmung von Dielektrizitätskonstanten. Zeitschrift für Physikalische Chemie. 14U(1), 622-663. doi:10.1515/zpch-1894-1445

Obot, I. B., Ankah, N. K., Sorour, A. A., Gasem, Z. M., & Haruna, K. (2017). 8-Hydroxyquinoline as an alternative green and sustainable acidizing oilfield corrosion inhibitor. Sustainable Materials and Technologies, 14, 1-10. doi:10.1016/j.susmat.2017.09.001

Obot, I. B., Macdonald, D. D., & Gasem, Z. M. (2015a). Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corrosion Science, 99, 1-30. doi:10.1016/j.corsci.2015.01.037

Öğretir, C., Çalış, S., Bereket, G., & Berber, H. (2003). A theoretical search on metal–ligand interaction mechanism in corrosion of some imidazolidine derivatives. Journal of Molecular Structure: Theochem., 626(1), 179-186. doi:10.1016/S0166-1280(03)00080-0

Ogunleye, O. O., Arinkoola, A. O., Eletta, O. A., Agbede, O. O., Osho, Y. A., Morakinyo, A. F., & Hamed, J. O. (2020). Green corrosion inhibition and adsorption characteristics of Luffa cylindrica leaf extract on mild steel in hydrochloric acid environment. Heliyon, 6(1), e03205-e03205. doi: 10.1016/j.heliyon.2020.e03205

Ortega, E. O., Hosseinian, H., Meza, I. B. A., López, M. J. R., Vera, A. R., & Hosseini, S. (2022). Material Characterization Techniques and Applications (1nd ed.): Springer, Singapore.

Ouakki, M., Galai, M., Rbaa, M., Abousalem, A. S., Lakhrissi, B., Rifi, E. H., & Cherkaoui, M. (2019). Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium. Heliyon, 5(11), e02759-e02759. doi: 10.1016/j.heliyon.2019.e02759

Oukhrib, R., Abdellaoui, Y., Berisha, A., Abou Oualid, H., Halili, J., Jusufi, K., . . . Len, C. (2021). DFT, Monte Carlo and molecular dynamics simulations for the prediction of corrosion inhibition efficiency of novel pyrazolylnucleosides on Cu(111) surface in acidic media. Scientific Reports, 11(1), 3771. doi: 10.1038/s41598-021-82927-5

Paquet, E., & Viktor, H. L. (2015). Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review. BioMed Research International, 2015, 183918. doi: 10.1155/2015/183918

Pereira A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria/RS. Ed. UAB/NTE/UFSM. Retrieved from https://www.ufsm.br/app/uploads/sites/358/2019/02/Metodologia-da-Pesquisa-Cientifica_final.pdf

Qiang, Y., Zhang, S., Xu, S., & Li, W. (2016). Experimental and theoretical studies on the corrosion inhibition of copper by two indazole derivatives in 3.0% NaCl solution. Journal of Colloid and Interface Science, 472, 52-59. doi:10.1016/j.jcis.2016.03.023

Quattrociocchi, D. G. S., Inocêncio, N. S., Oliveira, A. R., & Paes, L. W. C. (2020). Estudo teórico da relação dos orbitais de fronteira com eficiência de inibição de compostos modelo de derivados da 2-Aminopirazina. Brazilian Journal of Development, 6(3), 13544-13560. doi:10.34117/bjdv6n3-280

Quraishi, M. A., Chauhan, D. S., & Saji, V. S. (2020). Experimental methods of inhibitor evaluation. In M. A. Quraishi, D. S. Chauhan & V. S. Saji (Eds.), Heterocyclic Organic Corrosion Inhibitors (pp. 21-57): Elsevier.

Ramachandran, K. I., Gopakumar, Deepa, Namboori, Krishnan. (2008). Computational Chemistry and Molecular Modeling: Springer Berlin Heidelberg.

Ramaganthan, B., Gopiraman, M., Olasunkanmi, L. O., Kabanda, M. M., Yesudass, S., Bahadur, I., . . . Ebenso, E. E. (2015). Synthesized photo-cross-linking chalcones as novel corrosion inhibitors for mild steel in acidic medium: experimental, quantum chemical and Monte Carlo simulation studies. RSC Advances, 5(94), 76675-76688. doi:10.1039/C5RA12097G

Rbaa, M., Galai, M., Benhiba, F., Obot, I. B., Oudda, H., Ebn Touhami, M., . . . Zarrouk, A. (2019). Synthesis and investigation of quinazoline derivatives based on 8-hydroxyquinoline as corrosion inhibitors for mild steel in acidic environment: experimental and theoretical studies. Ionics, 25(7), 3473-3491. doi: 10.1007/s11581-018-2817-7

Rbaa, M., & Lakhrissi, B. (2019). Novel oxazole and imidazole based on 8-hydroxyquinoline as a corrosion inhibition of mild steel in HCl solution: Insights from experimental and computational studies. Surfaces and Interfaces, 15, 43-59. doi:10.1016/j.surfin.2019.01.010

Reed, A. E., Weinstock, R. B., & Weinhold, F. (1985). Natural population analysis. Journal of Chemical Physics, 83(2), 735-746. doi: https://doi.org/10.1063/1.449486

Ribeiro, J. (2020). Espectroscopia de Impedância Eletroquímica: uma Ferramenta nas Investigações Eletroquímicas. Revista Virtual de Quimica, 12, 1626-1641. doi:10.21577/1984-6835.20200123

Rugmini Ammal, P., Prajila, M., & Joseph, A. (2018). Effective inhibition of mild steel corrosion in hydrochloric acid using EBIMOT, a 1, 3, 4-oxadiazole derivative bearing a 2-ethylbenzimidazole moiety: Electro analytical, computational and kinetic studies. Egyptian Journal of Petroleum, 27(4), 823-833. doi:10.1016/j.ejpe.2017.12.004

Salhi, A., Tighadouini, S., El-Massaoudi, M., Elbelghiti, M., Bouyanzer, A., Radi, S., . . . Zarrouk, A. (2017). Keto-enol heterocycles as new compounds of corrosion inhibitors for carbon steel in 1 M HCl: weight loss, electrochemical and quantum chemical investigation. Journal of Molecular Liquids, 248, 340-349. doi: 10.1016/j.molliq.2017.10.040

Salima, K. A., Wassan, B. A., & Anees, A. K. (2019). Synthesis and investigations of heterocyclic compounds as corrosion inhibitors for mild steel in hydrochloric acid. International Journal of Industrial Chemistry, 10(2), 159-173. doi:10.1007/s40090-019-0181-8

Salvatella, L. (2017). The alkyl group is a –I+R substituent. Educación Química, 28(4), 232-237. doi:10.1016/j.eq.2017.06.004

Sane, R. T., Rocha, F. R. P., & Zagatto, E. A. G. (2019). Gravimetry. In P. Worsfold, C. Poole, A. Townshend & M. Miró (Eds.), Encyclopedia of Analytical Science (Third Edition) (pp. 349-355). Oxford: Academic Press.

Saranya, J., Sounthari, P., Kiruthuka, A., Parameswari, K., Chitra, S. J. J. o. M., & Science, E. (2015). The inhibiting effect of some quinoxaline derivative towards mild steel corrosion in acid media: chemical, electrochemical and theoretical studies. Journal of Materials and Environmental Science 6(2), 425-444. Retrieved from https://www.jmaterenvironsci.com/Document/vol6/vol6_N2/51-JMES-1086-2014-Saranya.pdf

Saranya, J., Sowmiya, M., Sounthari, P., Parameswari, K., Chitra, S., & Senthilkumar, K. (2016). N-heterocycles as corrosion inhibitors for mild steel in acid medium. Journal of Molecular Liquids, 216, 42-52. doi:10.1016/j.molliq.2015.12.096

Sedriks, A. J. (1996). Corrosion of Stainless Steels (2nd Edition ed.): Wiley-Interscience, New York.

Sholl, D., & Steckel, J. A. (2009). Density Functional Theory: A Practical Introduction: Wiley.

Silva, A. D. d. (2020). Propriedades químico-quânticas utilizando o método TFD: uma ferramenta teórica aplicada no estudo de inibidores de corrosão. Research, Society and Development, 9(12):e2291210499. doi:10.33448/rsd-v9i12.10499

Silva, M. G., Costa, A. N. C., Sangi, D. P., Yoneda, J., Coelho, L. W., & Ferreira, E. A. (2021). Comparative study of oxazolidine and imidazolidine compounds as inhibitors of SAE 1020 steel corrosion in aqueous HCl solution. Chemical Engineering Communications, 1-17. doi:10.1080/00986445.2021.1940154

Silva, M. G., Costa, A. N. C., Silvério, R. L., de Araujo, R. G., Sangi, D. P., Pedrosa, L. F., . . . Ferreira, E. A. (2022). Inhibition effects of ionic and non-ionic derivatives of imidazole compounds on hydrogen permeation during carbon steel pickling. Journal of Materials Research and Technology, 16, 1324-1338. doi:10.1016/j.jmrt.2021.12.068

Silverman, D. C. (2011). Practical Corrosion Prediction Using Electrochemical Techniques Uhlig's Corrosion Handbook (pp. 1129-1166).

Singh, U. C., & Kollman, P. A. (1984). An approach to computing electrostatic charges for molecules. Journal of Computational Chemistry 5(2), 129-145. doi:10.1002/jcc.540050204

Solomon, M. M., Umoren, S. A., Quraishi, M. A., & Jafar Mazumder, M. A. (2019). Corrosion inhibition of N80 steel in simulated acidizing environment by N-(2-(2-pentadecyl-4,5-dihydro-1H-imidazol-1-YL) ethyl) palmitamide. Journal of Molecular Liquids, 273, 476-487. doi:10.1016/j.molliq.2018.10.032

Stephen, W., Campbell, W., Keattch, C., & Mackenzie, R. (1980). Some historical landmarks in analytical chemistry. Analytical Proceedings, 17, 73-81. doi:10.1039/AP9801700073

Taheri, P., Milošev, I., Meeusen, M., Kapun, B., White, P., Kokalj, A., & Mol, A. (2020). On the importance of time-resolved electrochemical evaluation in corrosion inhibitor-screening studies. npj Materials Degradation, 4(1), 12. doi:10.1038/s41529-020-0116-z

Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. Journal of Chemical Theory and Computation, 4(2), 297-306. doi:10.1021/ct700248k

Treitel, N., Shenhar, R., Aprahamian, I., Sheradsky, T., & Rabinovitz, M. (2004). Calculations of PAH anions: When are diffuse functions necessary? Physical Chemistry Chemical Physics, 6(6), 1113-1121. doi:10.1039/B315069K

Vasconcelos, N. M. S. (2019). Fundamentos da Química Analítica Quantitativa (2ed. ed.): UECE.

Verma, C., Ebenso, E. E., & Quraishi, M. A. (2020). Molecular structural aspects of organic corrosion inhibitors: Influence of –CN and –NO2 substituents on designing of potential corrosion inhibitors for aqueous media. Journal of Molecular Liquids, 316, 113874. doi:10.1016/j.molliq.2020.113874

Verma, C., Lgaz, H., Verma, D. K., Ebenso, E. E., Bahadur, I., & Quraishi, M. A. (2018). Molecular dynamics and Monte Carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: A review. Journal of Molecular Liquids, 260, 99-120. doi:10.1016/j.molliq.2018.03.045

Verma, C., Olasunkanmi, L. O., Ebenso, E. E., Quraishi, M. A., & Obot, I. B. (2016). Adsorption Behavior of Glucosamine-Based, Pyrimidine-Fused Heterocycles as Green Corrosion Inhibitors for Mild Steel: Experimental and Theoretical Studies. The Journal of Physical Chemistry C, 120(21), 11598-11611. doi:10.1021/acs.jpcc.6b04429

Wang, S., Zhang, J., Gharbi, O., Vivier, V., Gao, M., & Orazem, M. E. (2021). Electrochemical impedance spectroscopy. Nature Reviews Methods Primers, 1(1), 41. doi:10.1038/s43586-021-00039-w

Warburg, E. (1899). Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom. Annalen der Physik 303(3), 493-499. doi:10.1002/andp.18993030302

Wazzan, N., Obot, I. B., & Faidallah, H. (2018). Experimental and theoretical evaluation of some synthesized imidazolidine derivatives as novel corrosion inhibitors for X60 steel in 1 M HCl solution. Journal of Adhesion Science and Technology, 32(23), 2569-2589. doi:10.1080/01694243.2018.1499321

Wazzan, N. A., & Mahgoub, F. M. (2014). DFT Calculations for Corrosion Inhibition of Ferrous Alloys by Pyrazolopyrimidine Derivatives. Open Journal of Physical Chemistry. Vol.04No.01, 9. doi:10.4236/ojpc.2014.41002

Wolynec, S. (2003). Técnicas eletroquímicas em corrosão.

Xu, X., Singh, A., Sun, Z., Ansari, K. R., & Lin, Y. (2017). Theoretical, thermodynamic and electrochemical analysis of biotin drug as an impending corrosion inhibitor for mild steel in 15% hydrochloric acid. The Royal Society Open Science 4(12), 170933. doi:10.1098/rsos.170933

Zhang, R.-Q., & Fan, W.-J. (2015). Economical basis sets and their uses in ab initio calculations. International Journal of Quantum Chemistry 115(9), 570-577. doi:10.1002/qua.24830

Zhao, X., Chen, C., Sun, Q., Li, Y., & Yu, H. (2019). Molecular structure optimization design of inhibitors based on frontier orbitals theory. Applied Surface Science, 494, 895-907. doi:10.1016/j.apsusc.2019.07.248

Published

19/07/2022

How to Cite

QUATTROCIOCCHI, D. G. S. .; SANTORO , A. S. .; FONSECA, T. N. M. da .; CONCEIÇÃO JÚNIOR , V. da .; PAES, L. W. C. .; CAMPOS, V. R. . Experimental and theoretical techniques applied to the study of organic corrosion inhibitors in acidic media . Research, Society and Development, [S. l.], v. 11, n. 9, p. e57811932321, 2022. DOI: 10.33448/rsd-v11i9.32321. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32321. Acesso em: 23 apr. 2024.

Issue

Section

Review Article