Diffraction and interference: measurement of the wavelength of the visible light spectrum.
DOI:
https://doi.org/10.33448/rsd-v9i6.3241Keywords:
Diffraction and interference; wavelength of light; Physics teachingAbstract
The work aims to establish and improve the teaching and learning processes, through an experimental activity carried out in the Physics laboratory, in the Physics degree course at IFMA-Campus São João dos Patos. Aiming to know and understand the diffraction and interference phenomena, with the main objective to show and calculate the average wavelength of the visible spectrum (380-740nm) through a diffraction network, thus being able to enrich the studied concepts, through a reflective analysis of Young's experiment, stimulating the creation of new theoreticians, serving to show students the behavior of light as a wave, knowing that diffraction is the deviation from a straight path, which when passing through an orifice or being obstructed by a obstacle suffers an enlargement or bending, spreading to different regions, acting as if it were new sources, causing the scattering of light. In this way, encouraging the teacher to use and create procedural methodologies, allowing the student an environment conducive to participate and develop their intellectual skills and abilities, thus being able to associate theory with practice, validating concepts and equations to calculate the length of wave, obtaining as a result the verification of the effectiveness of the calculation from the symmetry of the luminous intensities in relation to the central one, being able to compare the calculated values of the radiations with those of the literature. Thus, through practices, they can instigate, establish and awaken students' desire for knowledge through science.
References
Alencar, F.P. (2019). Os laboratórios didáticos de um curso de física. Curitiba: Appris.
Bôas, N.V., Doca, R.H., & Biscuola, G.J. (2012). Tópicos de física: Termologia, ondulatória, óptica (19ed.). São Paulo: Saraiva.
Halliday, D., Resnick, R., & Walker, J. (2009). Fundamentos de Física: Óptica e Física Moderna (8ª ed.). Rio de Janeiro: LTC.
Nussenzveig, H.M. (1998). Curso de Física básica: Ótica, relatividade, física quântica. São Paulo: Blucher.
Zilio, S.C. (2009) Óptica Moderna: fundamentos e aplicações. São Carlos: IFSC/USP.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.