Lanthanum Strontium Cobalt Ferrite (LSCF) perovskites by Sol-Gel Method for Potential Application in Solid Oxide Fuel Cells (SOFC)

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.32489

Keywords:

Perovskite; LSCF; Fuel cell; Cathode.

Abstract

Fuel cells are one of the most efficient and effective solutions to environmental problems and high energy demand. They are devices which change chemical energy into electrochemical energy, allowing much higher efficiency than conventional thermomechanical conversion methods. Lanthanum Strontium Cobalt Ferrite (LSCF) perovskites have been widely studied for application as cathodes in solid oxide fuel cells (SOFC) due to their high electrical conductivity, high thermal and chemical stability, low difference in thermal expansion coefficient, and physico-chemical compatibility with the other cells components. The aim of this work was to synthesize perovskitas type La0.7Sr0.3Co0.5Fe0.5O3 by sol-gel method and evaluate the potential for application as a cathode for fuel cell. The results obtained by X-ray powder diffraction (XRD) indicate that the sol-gel method calcined at 900ºC obtained an amount of the perovskite phase above 95%. The Field Emission Gun-Scanning Electron Microscope (FEG-SEM) images of LSCF film produced with 4 layers showed a better quality. Thus, the results obtained by XRD and FEG-SEM, indicate that the sol-gel method calcined at 900ºC has a potential application as cathode in solid oxide fuel cells.

References

Albuquerque, D. S., Melo, D. M. A., Medeiros, R. L. B. A., Costa, R. C. P., Maziviero, F. V., Carvalho, F. C., & Ruiz, J. A. C. Ruiz. (2021). Evaluating the Reactivity of CuO-TiO2 Oxygen Carrier for Energy Production Technology with CO2 Capture. Research, Society and Development 10 (12 SE-): e514101220596. https://doi.org/10.33448/rsd-v10i12.20596.

Anderson, Mark T, Greenwood, K. B., Taylor G. A., & Poeppelmeier K. R. (1993). B-Cation Arrangements in Double Perovskites. Progress in Solid State Chemistry, 22 (3), 197–233. https://doi.org/https://doi.org/10.1016/0079-6786(93)90004-B.

Andrade, C. E. C., Holanda F. S. R., Ubirajara, W. M., Bandeira, A. A., & Santos L. D. V. (2020). A Bibliometric Analysis of the Literature Applied to Transfer of Fuel Cell Technology. Research, Society and Development 9 (12 SE-): e22391211021. https://doi.org/10.33448/rsd-v9i12.11021.

Arandiyan, H., Mofarah, S. S., Sorrell, C. C., Doustkhah, E., Sajjadi, B., Hao, D., Wang, Y., Sun, H., Ni, Bing-Jie, Rezaei, M. Shao & Z., Maschmeyer, T. (2021). Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chemical Society Reviews, 50, 10116-10211. https://doi.org/10.1039/D0CS00639D.

Boudghene, S. A., & Traversa, E. (2002). Fuel Cells, an Alternative to Standard Sources of Energy. Renewable and Sustainable Energy Reviews, 6(3), 295–304. https://doi.org/https://doi.org/10.1016/S1364-0321(01)00015-6.

Cheng, J., Qian W., Wang P., & Tian, C. (2022). A High Activity Cathode of Sm0.2Ce0.8O1.9 Decorated Mn1.5Co1.5O4 Using Ion Impregnation Technique within a Solid Oxide Fuel Cell System. Solid State Sciences, 131, 106962. https://doi.org/https://doi.org/10.1016/j.solidstatesciences.2022.106962.

Costilla-Aguilar, S. U., Escudero, M. J., Cienfuegos-Pelaes, R. F., & Aguilar-Martínez, J. A. (2021). Double Perovskite La1.8Sr0.2CoFeO5+δ as a Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells. Journal of Alloys and Compounds, 862, 158025. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.158025.

Fatah, A. F., Mohamad, A. A., Muchtar, A., & Hamid, N. A. (2021). Physical Characterization of LSCF-CuO via Enhanced Modified Sol–Gel Method for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Materials Today: Proceedings, 46, 2052–57. https://doi.org/https://doi.org/10.1016/j.matpr.2021.03.141.

He, A., Onishi, J., Shikazono, N. (2020). Optimization of electrode-electrolyte interface structure for solid oxide fuel cell cathode. Journal of Power Sources, 449, 227565. https://doi.org/10.1016/j.jpowsour.2019.227565.

Kaur, P., & Singh, K. (2020). Review of Perovskite-Structure Related Cathode Materials for Solid Oxide Fuel Cells. Ceramics International, 46 (5), 5521–35. https://doi.org/https://doi.org/10.1016/j.ceramint.2019.11.066.

Klafke, Y. R., Mata, M. M., Santos, I. M. G., Alves, M. C. F., & Simões, S. S. (2021). Performance Evaluation of the SrZrxSn1-XO3 Photocatalytic System for Remazol Yellow Dye Degradation Employing Box-Behnken Design. Research, Society and Development 10 (2 SE-), e48610212328. https://doi.org/10.33448/rsd-v10i2.12328.

Liu, J., Co A. C., Paulson, S., & Viola I Birss. (2006). Oxygen Reduction at Sol–Gel Derived La0.8Sr0.2Co0.8Fe0.2O3 Cathodes. Solid State Ionics 177 (3), 377–87. https://doi.org/https://doi.org/10.1016/j.ssi.2005.11.005.

Piao, J., Sun, K., Zhang N., & Xu S. (2008). A Study of Process Parameters of LSM and LSM–YSZ Composite Cathode Films Prepared by Screen-Printing. Journal of Power Sources 175 (1), 288–95. https://doi.org/https://doi.org/10.1016/j.jpowsour.2007.09.078.

Stambouli, A. B., & Traversa, E. (2002). Solid Oxide Fuel Cells (SOFCs): A Review of an Environmentally Clean and Efficient Source of Energy. Renewable and Sustainable Energy Reviews 6 (5), 433–55. https://doi.org/https://doi.org/10.1016/S1364-0321(02)00014-X.

Ufa, R. A., Malkova, Y. Y., Rudnik, V. E., Andreev, M. V., & Borisov, V. A. (2022). A Review on Distributed Generation Impacts on Electric Power System. International Journal of Hydrogen Energy, 47 (47), 20347–61. https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.04.142.

Wang, L., Wang, P., Geng, C., Cao H., Xu C., Cheng, J., & Hong T. (2020). A Novel Core-Shell LSCF Perovskite Structured Electrocatalyst with Local Hetero-Interface for Solid Oxide Fuel Cells. International Journal of Hydrogen Energy, 45 (20), 11824–33. https://doi.org/https://doi.org/10.1016/j.ijhydene.2020.02.130.

Xu, Q., Guo, Z., Xia, L., He, Q., Li, Z., Bello, I. T., Zheng, K., & Ni M. (2022). A Comprehensive Review of Solid Oxide Fuel Cells Operating on Various Promising Alternative Fuels. Energy Conversion and Management, 253, 115175. https://doi.org/https://doi.org/10.1016/j.enconman.2021.115175.

Yatoo, M. A, & Skinner, S. J. (2022). Ruddlesden-Popper Phase Materials for Solid Oxide Fuel Cell Cathodes: A Short Review. Materials Today: Proceedings, 56, 3747–54. https://doi.org/https://doi.org/10.1016/j.matpr.2021.12.537.

Zhao, H., Li, W., Wang, H., Zhou, J., Sun, X., Wang, E., Zhao, L., Dong, B., & Wang, S. (2022). Surface Modification of La0.6Sr0.4Co0.2Fe0.8O3 Cathode by Infiltrating A-Site Deficient Non-Strontium La0.94Ni0.6Fe0.4O3 Perovskite for Solid Oxide Fuel Cells. Applied Surface Science, 572, 151382. https://doi.org/https://doi.org/10.1016/j.apsusc.2021.151382.

Downloads

Published

18/10/2022

How to Cite

FELIPE, L. C. de O. .; MELO, D. M. de A. .; MEDEIROS, R. L. B. de A. .; ARAÚJO, T. R. de .; SILVA, A. R. da .; DIAS, L. P. da S. .; FIGUEREDO, G. P. de . Lanthanum Strontium Cobalt Ferrite (LSCF) perovskites by Sol-Gel Method for Potential Application in Solid Oxide Fuel Cells (SOFC). Research, Society and Development, [S. l.], v. 11, n. 14, p. e43111432489, 2022. DOI: 10.33448/rsd-v11i14.32489. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32489. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences