Fermentation profile, nutritional and microbiological value of cassava root silage with food aditives

Authors

DOI:

https://doi.org/10.33448/rsd-v11i10.32612

Keywords:

Feeding; Conservation; Ruminants.

Abstract

The objective was to characterize the fermentative profile, nutritional and microbiological value of in natura cassava root silage with and without additives. A completely randomized design was used in a 4x3 split-plot scheme, with five replications. The study materials were allocated to the plots: Ground cassava root in natura or added to corn, soybean or rice bran. In the subplots, the times were allocated: fresh material: before ensiling, opening: at 45 days of fermentation and stability after the silage was exposed to air for seven days. Sampling was carried out to determine the bromatological analysis, total digestible nutrients, digestibility, pH, temperature, ammoniacal nitrogen, the microbiological profile through the determination of the populations of fungi and yeasts, Clostridium, lactic acid bacteria and enterobacteria. The addition of bran changed the parameters evaluated. The dry matter increased during fermentation and exposure to air and in all times and materials the pH was adequate. Crude protein decreased until the opening of the silos due to unwanted fermentations, being higher in the silage added with soybean meal. The low content of fibrous compounds and TDN, and the high digestibility suggest silages obtained as energy feed in ruminant and/or monogastric diets. In conclusion, cassava root in natura or with the inclusion of additives can be preserved in the form of silage for use in ruminant diets.

References

Albuquerque Saraiva, T., de Figueiredo Monteiro, C. C., Feitosa, E. M. S., de Oliveira Moraes, G. S., Netto, A. J., Cardoso, D. B., Magalhães, A. L. R., & de Melo, A. A. S. (2020). Effect of association of fresh cassava root with corn silage in replacement for cactus cladodes on dairy cow performance. Tropical Animal Health and Production, 52(3), 927–933. https://doi.org/10.1007/s11250-019-02087-7

Almaguel, R. E.; Piloto, J. L.; Cruz, E. Medeiros, C. M, & Ly. J. (2011). Utilización del ensilaje artesanal de yuca como fuente energética en dietas para cerdos de engorde. Livestotock Research for Rural Development, v. 23, p.41-47.

Amaral, R. C. do, Bernardes, T. F., Siqueira, G. R., & Reis, R. A. (2007). Características fermentativas e químicas de silagens de capim-marandu produzidas com quatro pressões de compactação. Revista Brasileira de Zootecnia, 36(3), 532–539. https://doi.org/10.1590/s1516-35982007000300003

Almeida J.; Ferreira Filho J. R. (2005). Mandioca: Uma boa alternativa para alimentação animal. Bahia Agric. v. 7, n. 1, p. 50-56.

Amorim, D. S., Loiola Edvan, R., do Nascimento, R. R., Bezerra, L. R., de Araújo, M. J., da Silva, A. L., Mielezrski, F., & Nascimento, K. dos S. (2020). Fermentation profile and nutritional value of sesame silage compared to usual silages. Italian Journal of Animal Science, 19(1), 230–239. https://doi.org/10.1080/1828051X.2020.1724523

Amos, A. T., Idowu, O. M. O., Oso, A. O., Durojaiye, O. J., Agazue, K., & Adebowale, A. A. (2019). The chemical composition, anti-nutritional and microbial properties of ensiled cassava root-leaf blends as potential feed in swine diet. Pertanika Journal of Tropical Agricultural Science, 42(4), 1219–1235.

Araújo, D. D., Amorim, A. B., Saleh, M. A. D., Curcelli, F., Perdigón, P. L., Bicudo, S. J., & Berto, D. A. (2016). Nutritional evaluation of integral cassava root silages for growing pigs. Animal Nutrition, 2(3), 149–153. https://doi.org/10.1016/j.aninu.2016.04.006

Association of Analytical Chemists- AOAC. (1975). Official methods of analysis. (12th ed), Gaithersburg, MD.

Bernardes, T. F., Reis, R. A., & Amaral, R. C. do. (2009). Chemical and microbiological changes and aerobic stability of marandu grass silages after silo opening. Revista Brasileira de Zootecnia, 38(1), 1–8. https://doi.org/10.1590/s1516-35982009000100001

Dos Santos, N. J. A., Barbosa, A. M., Voltoloni, T. V., Menezes, D. R., Souza, C. M., Bezerra, L. R., Lanna, D. P. D., Ribeiro, C. V. D. M., & Oliveira, R. L. (2018). Physicochemical characteristics and fatty acid composition of the meat of lambs fed cassava silage and dry tamarind (Tamarindus indica). Animal Production Science, 59(7), 1373–1381. https://doi.org/10.1071/AN17855

Driehuis, F., Oude Elferink, S. J. W. H., & Van Wikselaar, P. G. (2001). Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass and Forage Science, 56(4), 330–343. https://doi.org/10.1046/j.1365-2494.2001.00282.x

Easley, J. F, J. T. McCall, G. K. Davis, & R. L. Shirley. 1965. Analytical methods for feeds and tissues. Gainesville: University of Florida, Nutrition Laboratory, Dept. of Animal Science, p. 81.

FAO. 2020. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/?#compare

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039–1042. https://doi.org/10.1590/s1413 70542011000600001

Ferreira, R. R., Bezerra, L. R., Marques, C. A. T., Da Costa Torreão, J. N., Edvan, R. L., Araújo, M. J., Amorim, D. S., & De Santana, H. A. (2017). Fermentation characteristics and nutritional quality of elephant grass silage added the buriti fruit peel. Semina:Ciencias Agrarias, 38(2), 931–942. https://doi.org/10.5433/1679-0359.2017v38n2p931

Figueiredo, M. P. de; Ferreira, J. Q. Lopes, I. O.; Tavares, G. M.; Figueira, N. de A.; Filho, W. M. S. (2000). Silagem de raiz de mandioca tratada com uréia. Revista Cientifica de Produção Animal, 1: 17-23.

Goering, H. K.; Van Soest, P.J. (1975). Forage fiber analyses. [S. l.: s. n.], 1975. GREENHILL, W. L. The buffering capacity of pasture plants with special reference to ensilage. Australian Journal of Agricultural Research, v. 15, n. 4, p. 511–519, 1964. https://doi.org/10.1071/AR9640511.

Heinritz, S. N., Martens, S. D., Avila, P., & Hoedtke, S. (2012). The effect of inoculant and sucrose addition on the silage quality of tropical forage legumes with varying ensilability. Animal Feed Science and Technology, 174(3–4), 201–210. https://doi.org/10.1016/j.anifeedsci.2012.03.017

IBGE. 2021. Instituto Brasileiro de Geografia e Estatística. Sidra: Sistema IBGE de Recuperação Automática (https://sidra.ibge.gov.br/tabela/1618#resultado).

Jobim, C. C., Reis, R. A., Schoken-iturrino, R. P., & Rosa, B. (1999). Desenvolvimento de microrganismos durante a utilização de silagens de grãos úmidos de milho e de espigas de milho sem brácteas Microorganism development during feed-out of high-moisture corn and corn-ears silages. Acta Scientiarum, 21(January 2016), 671–676. https://doi.org/10.4025/actascianimsci.v21i0.4348

Knowles, M. M., Pabón, M. L., & Carulla, J. E. (2012). Use of cassava (Manihot esculenta Crantz) and other starchy non-conventional sources in ruminant feeding. Revista Colombiana de Ciencias Pecuarias, 25(3), 488–499.

Kung, L., Shaver, R. D., Grant, R. J., & Schmidt, R. J. (2018). Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(5), 4020–4033. https://doi.org/10.3168/jds.2017-13909

Licitra, G., Hernandez, T. M., & Van Soest, P. J. (1996). Feedbunk management evaluation techniques. Animal Feed Science Technology, 57, 347–358.

Maynard, L. A. (2018). Animal nutrition. Animal Nutrition. https://doi.org/10.5962/bhl.title.155283

McDonald, P.; Henderson, A.R.; Heron, S (1991). The biochemistry of silage. 2. ed. Marloui: Chalcome, p.340.

Mertens, D. R. (1997). Creating a System for Meeting the Fiber Requirements of Dairy Cows. In Journal of Dairy Science (Vol. 80). https://doi.org/10.3168/jds.S0022-0302(97)76075-2

Napasirth, V., Napasirth, P., Sulinthone, T., Phommachanh, K., & Cai, Y. (2015). Microbial population, chemical composition and silage fermentation of cassava residues. Animal Science Journal, 86(9), 842–848. https://doi.org/10.1111/asj.12362

Oni, A. O., Sowande, O. S., Oni, O. O., Aderinboye, R. Y., Dele, P. A., Ojo, V. O. A., Arigbede, O. M., & Onwuka, C. F. I. (2014). Efecto de aditivos sobre la fermentación de ensilaje de hojas de yuca y el fluido ruminal en cabras Enanas de África occidental. Archivos de Zootecnia, 63(243), 449–459. https://doi.org/10.4321/S0004-05922014000300006

Pires, A. J. V., Carvalho, G. G. P. de, Garcia, R., Carvalho Junior, J. N. de, Ribeiro, L. S. O., & Chagas, D. M. T. (2009). Fracionamento de carboidratos e proteínas de silagens de capim-elefante com casca de café, farelo de cacau ou farelo de mandioca. Revista Brasileira de Zootecnia, 38(3), 422–427. https://doi.org/10.1590/s1516-35982009000300004

Polyorach, S., Wanapat, M., Cherdthong, A., & Kang, S. (2016). Rumen microorganisms, methane production, and microbial protein synthesis affected by mangosteen peel powder supplement in lactating dairy cows. Tropical Animal Health and Production, 48(3), 593–601. https://doi.org/10.1007/s11250-016-1004-y

Quaresma, J. P. S., Abreu, J. G. de, Almeida, R. G. de, Cabral, L. da S., Oliveira, M. A. de, & Rodrigues, R. C. (2010). Recuperação de matéria seca e composição química de silagens de gramíneas do gênero Cynodon submetidas a períodos de pré-emurchecimento. Ciência e Agrotecnologia, 34(5), 1232–1237. https://doi.org/10.1590/s1413-70542010000500022

Régnier, C., Bocage, B., Archimède, H., & Renaudeau, D. (2010). Effects of processing methods on the digestibility and palatability of cassava root in growing pigs. Animal Feed Science and Technology, 162(3–4), 135–143. https://doi.org/10.1016/j.anifeedsci.2010.09.010

Saree, S., Bunchasak, C., Rakangtong, C., Sakdee, J., Krutthai, N., & Poeikhampha, T. (2017). Comparative effects of corn-based diet and phase-fed cassava-based diet on growth rate, carcass characteristics and lipid profile of meat-type ducks. Asian-Australas J Anim Sci, 30(6), 843–848. https://doi.org/10.5713/ajas.16.0378

Sena, L. S., Rocha Júnior, V. R., Dos Reis, S. T., Matos E Oliveira, L., Marques, K. M. S., & Tomich, T. R. (2014). Degradabilidade das silagens de diferentes frações da parte aérea de quatro cultivares de mandioca. Ciencia Animal Brasileira, 15(3), 249–258. https://doi.org/10.1590/1809-6891v15i316567

Silva, N., Junqueira, V. C. A., Silveira, N. F.A., Taniwaki, M. H., Santos, R. F. S., Gomes, R. A. R. (2007). Manual de Métodos de Análise Microbiológica de Alimentos. 3ª edição, Livraria Varela, São Paulo.

Silva, M. A. A., Furlan, A. C., Moreira, I., Paiano, D., Scherer, C., & Martins, E. N. (2008). Avaliação nutricional da silagem de raiz de mandioca contendo soja integral para leitões na fase inicial. Revista Brasileira de Zootecnia, 37(8), 1441–1449. https://doi.org/10.1590/S1516-35982008000800015

Silva, C. F. P. G., Dos Santos Pedreira, M., De Figueiredo, M. P., Bernardino, F. S., & Da Hora Farias, D. (2010). Qualidade fermentativa e caracterização químico- bromatológica de silagens da parte áerea e raízes de mandioca (Manihot esculenta Crantz). Acta Scientiarum - Animal Sciences, 32(4), 401–408. https://doi.org/10.4025/actascianimsci.v32i4.8930

Silva, D.J. & Queiroz, A.C. (2009). Análise de alimentos: métodos químicos e biológicos. 3. ed. Universidade Federal de Viçosa, p. 235.

Sniffen, C. J.; O’Connor, J. D.; Van Soest, P. J.; Fox, D. G.; Russell, J. B. (1992) A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of animal science, v. 70, n. 11, p. 3562–3577. https://doi.org/10.2527/1992.70113562x.

Stupak, M., Vanderschuren, H., Gruissem, W., & Zhang, P. (2006). Biotechnological approaches to cassava protein improvement. Trends in Food Science and Technology, 17(12), 634–641. https://doi.org/10.1016/j.tifs.2006.06.004

Sudarman, A., Hayashida, M., Puspitaning, I. R., Jayanegara, A., & Shiwachi, H. (2016). The use of cassava leaf silage as a substitute for concentrate feed in sheep. Tropical Animal Health and Production, 48(7), 1509–1512. https://doi.org/10.1007/s11250-016-1107-5

Tilley, J. M. A., & Terry, R. A. (1963). a Two‐Stage Technique for the in Vitro Digestion of Forage Crops. Grass and Forage Science, 18(2), 104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

Tolentino, D. C., Rodrigues, J. A. S., Pires, D. A. de A., Veriato, F. T., Lima, L. O. B., & Moura, M. M. A. (2016). Qualidade de silagens de diferentes genótipos de sorgo. Acta Scientiarum - Animal Sciences, 38(2), 143–149. https://doi.org/10.4025/actascianimsci.v38i2.29030

Van Soest, P.J. (1994). Nutritional ecology of the ruminant. 2. ed. New York: Cornell University, p.476.

Van Soest, P.J.; Robertson, J.B. (1985). Analysis of forages and fibrous foods. Ithaca: Cornell University, p.202.

Weiss, W. P. Predicting Energy Values of Feeds. Journal of Dairy Science, v. 76, n. 6, p. 1802–1811, 1993. https://doi.org/10.3168/jds.S0022-0302(93)77512-8.

Zambom, M. A., Fernandes, T., Soares, M. S. S. P., Castagnara, D. D., Neres, M. A., Javorski, C. R., & Cruz, E. A. (2014). Características da silagem de resíduo úmido de fécula de mandioca adicionada de níveis de ureia. Archivos de Zootecnia, 63(244), 677–688. https://doi.org/10.21071/az.v63i244.516

Zanine, A. de M., Santos, E. M., Dórea, J. R. R., Dantas, P. A. de S., da Silva, T. C., & Pereira, O. G. (2010). Evaluation of elephant grass silage with the addition of cassava scrapings. Revista Brasileira de Zootecnia, 39(12), 2611–2616. https://doi.org/10.1590/S1516-35982010001200008

Published

30/07/2022

How to Cite

GARCEZ, K. F.; HOCH, G. C.; RODRIGUES, A. T.; SCHNEIDER, C. R.; SOARES, D. da C.; CASTAGNARA, D. D. Fermentation profile, nutritional and microbiological value of cassava root silage with food aditives . Research, Society and Development, [S. l.], v. 11, n. 10, p. e265111032612, 2022. DOI: 10.33448/rsd-v11i10.32612. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32612. Acesso em: 3 jan. 2025.

Issue

Section

Agrarian and Biological Sciences