Nonlinear analysis of trusses considering hyperelastic models by the positional finite element method

Authors

DOI:

https://doi.org/10.33448/rsd-v11i10.32684

Keywords:

Hyperelasticity; Physical nonlinearity; Geometric nonlinearity; Newton-Raphson; Arc length.

Abstract

In recent years, there has been an increase in the use of hyperelastic materials in structures, such as vulcanized or natural polymers. As a result, it becomes relevant to expand the knowledge regarding the mechanical performance of these materials through the development of numerical models that simulate their behavior and that are capable of presenting more realistic predictions. For materials represented by hyperelastic models, the consideration of physical and geometric nonlinearities is more adequate to represent their mechanical behavior when subjected to large deformations. Thus, the present work aims at the implementation of a computational code, with the purpose of analyzing and comparing the mechanical behavior of trusses considering the physical non-linearity, described by hyperelastic models, and the geometric non-linearity using the positional formulation in finite elements. The Riks-Wempner arc length method associated with the Newton-Rapshson iterative method was used to trace equilibrium paths with snap-through and snap-back phenomena. The Neo-Hookean, Mooney-Rivlin, Polynomial, Yeoh, Ogden and Arruda-Boyce hyperelastic models were considered. The validation of the implemented program took place through the comparison with analytical solutions and numerical and experimental results of scientific papers.

References

Arruda, E. M., & Boyce, M. C. (1993). A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2), 389–412. https://doi.org/10.1016/0022-5096(93)90013-6

Becho, J. dos S. (2016). Formulação posicional não linear do Método dos Elementos Finitos para descrição do comportamento mecânico viscoelástico de fluência em vigas e estruturas de pórtico. 136p. Dissertação (Mestrado em Engenharia de Estruturas) - Escola de Engenharia da Universidade Federal de Minas Gerais. http://hdl.handle.net/1843/BUBD-AAJDXJ

Belo, I. M. (2009). Desenvolvimento da formulação corrotacional em elementos finitos de casca para a análise hiperelástica. 219p. Tese (Doutorado) - Universidade Federal de Santa Catarina. http://repositorio.ufsc.br/xmlui/handle/123456789/93414

Blandford, G. E. (1996). Progressive failure analysis of inelastic space truss structures. Computers & Structures, 58(5), 981–990. https://doi.org/10.1016/0045-7949(95)00217-5

Coda, H. B. (2003). An exact FEM geometric non-linear analysis of frames based on position description. XVII International Congress of Mechanical Engineering - COBEM. November 10-14, São Paulo, SP. https://abcm.org.br/anais/cobem/2003/html/pdf/COB03-0546.pdf

Fernandes, W. L., Araújo, V. A., & Greco, M. (2021). Contribuição ao estudo de medidas objetivas de deformação na Formulação posicional do método dos elementos finitos. Anais do XXIV ENMC – Encontro Nacional de Modelagem Computacional e XII ECTM – Encontro de Ciências e Tecnologia de Materiais. Outubro 13-15. https://www.researchgate.net/publication/356904359

Forde, B. W. R., & Stiemer, S. F. (1987). Improved arc length orthogonality methods for nonlinear finite element analysis. Computers & Structures, 27(5), 625–630. https://doi.org/10.1016/0045-7949(87)90078-2

Greco, M., Gesualdo, F. A. R., Venturini, W. S., & Coda, H. B. (2006). Nonlinear positional formulation for space truss analysis. Finite Elements in Analysis and Design, 42(12), 1079–1086. https://doi.org/10.1016/j.finel.2006.04.007

Greco, M., & Costa, L. J. R. da. (2012). Discussion on “The logarithmic strain measure applied to the nonlinear positional formulation for space truss analysis” [Finite Element in Analysis and Design 45 (2009) 632–639] and “Nonlinear positional formulation for space truss analysis” [Finite Element in Analysis and Design 42 (2006) 1079–1086]. Finite Elements in Analysis and Design, 52, 93–95. https://doi.org/10.1016/j.finel.2011.12.002

Gomes, G. C. (2019). Análise de formulação não Linear de Elementos Finitos para cascas com e sem curvaturas iniciais com materiais hiperelásticos. 129p. Dissertação (Mestrado em Engenharia de Estruturas) – Escola Politécnica, Universidade Federal da Bahia. http://repositorio.ufba.br/ri/handle/ri/31406

Hangai, Y., & Kawamata, S. (1971). Nonlinear analysis of space frames and snap-through buckling of reticulated shell structures. IASS Pacific Symp. Part II on Tension Structures and Space Frames. Tokyo and Kyoto.

Hill, C. D., Blandford, G. E., & Wang, S. T. (1989). Post‐Buckling Analysis of Steel Space Trusses. Journal of Structural Engineering, 115(4), 900–919. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:4(900)

Hoss, L. (2009). Modelos constitutivos hiperelásticos para elastômeros incompressíveis: ajuste, comparação de desempenho e proposta de um novo modelo. 315p. Dissertação (Mestrado) - Escola de Engenharia da Universidade Federal do Rio Grande do Sul. http://hdl.handle.net/10183/16310

Lacerda, E. G. M., Maciel, D. N., & Scudelari, A. C. (2013). Positional finite element method applied to nonlinear geometric plane trusses. XXXIV Iberian Latin-American Congress on Computational Methods in Engineering, ABMEC, Pirenopolis, GO, Brazil, November 10-13. https://www.researchgate.net/publication/263964771

Lacerda, E. G. M. (2014). Análise não linear de treliças pelo método dos elementos finitos posicional. 107p. Dissertação (Mestrado em Engenharia de Estruturas) – Universidade Federal do Rio Grande do Norte. https://repositorio.ufrn.br/jspui/handle/123456789/14861

Mafaldo, J. G., Silva Filho, J. N. da, Marcelino, K. A., Maciel, D. N., & Coutinho, P. M. (2022). Analysis of a straight free-standing stair in reinforced concrete through analytical and numerical models via Finite Element Method. Research, Society and Development, 11(8). https://doi.org/10.33448/rsd-v11i8.30842

Marczak, R. J., & Iturrioz, I. (2006). Caracterização do comportamento de materiais hiperelásticos para Simulação Numérica. Projeto de Pesquisa, SENAI - Departamento Regional do Rio Grande do Sul. https://www.senairs.org.br/sites/default/files/documents/caracterizacao-de-comportamento-de-materiais-hiperelasticos.pdf

Miyazaki, J. P. de L., Souza, L. A. F. de, & Martins, C. H. (2020). Análise não linear de treliças com a formulação corrotacional de elementos finitos e diferentes medidas de deformações. Revista Tecnológica - Universidade Estadual de Maringá, 29(2), 499-515. https://doi.org/10.4025/revtecnol.v29i2.52237

Mooney, M. (1940). A Theory of Large Elastic Deformation. Journal of Applied Physics, 11(9), 582–592. https://doi.org/10.1063/1.1712836

Ogden, R. W. (1972). Large Deformation Isotropic Elasticity - On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 326(1567), 565–584. https://doi.org/10.1098/rspa.1972.0026

Papadrakakis, M. (1981). Post-buckling analysis of spatial structures by vector iteration methods. Computers & Structures, 14(5-6), 393–402. https://doi.org/10.1016/0045-7949(81)90059-6

Paradiso, M., Reale, E., & Tempesta, G. (1979). Nonlinear post-buckling analysis of reticulated dome structures. Proc. IASS World Congress on Shell and Spatial Structures. Madrid.

Pascon, J. P. (2008). Modelos constitutivos para materiais hiperelásticos: estudo e implementação computacional. 232p. Dissertação (Mestrado) - Departamento de Engenharia de Estruturas, Escola de Engenharia de São Carlos, Universidade de São Paulo. https://doi.org/10.11606/D.18.2008.tde-17042008-084851

Paula, J. P. A. de, Lalo, D. F., Almeida, A. M. de, & Greco, M. (2019). Comparative curve fitting through hyperelastic constitutive models for several formulations of carbonbrack-filled rubber vulcanizates. XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC, Natal/RN, Brazil, November 11-14. https://www.researchgate.net/profile/Marcelo-Greco-2/publication/338127242

Rezende, R. C. (2020). Comportamento mecânico de dispositivos de dissipação de energia fabricados com elastômeros para vigas de pontes. 108p. Dissertação (Mestrado) - Escola de Engenharia, Universidade Federal de Minas Gerais. http://pos.dees.ufmg.br/diss_defesas_detalhes.php?aluno=1353

Riks, E. (1972). The application of Newton's methods to the problems elastic stability. Journal of Applied Mechanics, 39(4), 1060-1065. https://doi.org/10.1115/1.3422829

Riks, E. (1979). An incremental approach to the solution of snapping and buckling problems. International Journal of Solids and Structures, 15(7), 529-551. https://doi.org/10.1016/0020-7683(79)90081-7

Rivlin, R. S., & Saunders, D. W. (1951). Large elastic deformations of Isotropic Materials VII. Experiments on the deformation of rubber. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 243(865), 251–288. https://doi.org/10.1098/rsta.1951.0004

Suzuki, J. L. (2013). Aplicação do Método dos Elementos Finitos de Alta Ordem em hiperelasticidade com dano isotrópico. 81p. Dissertação (Mestrado) - Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas. https://doi.org/10.47749/T/UNICAMP.2013.905556

Treloar, L. R. G. (1975). The Physics of Rubber Elasticity, 3rd edition. Oxford: Clarendon Press. https://www.eng.uc.edu/~beaucag/Classes/Properties/Books/The%20physics%20of%20rubber%20elasticity%20_%20by%20L.R.G.%20Treloar-Oxford%20University%20Press,%20USA%20(2005).pdf

Vieira, A. L., Leal, V., & Silveira, M. E. (2010). Avaliação de modelos hiperelásticos na simulação numérica de um suporte de motor automotivo. Nono Simpósio de Mecânica Computacional, ABMEC, Universidade Federal de São João Del-Rei, Maio 26-28. http://docplayer.com.br/43438701-Avaliacao-de-modelos-hiperelasticos-na-simulacao-numerica-de-um-suporte-de-motor-automotivo.html

Wempner, G. A. (1971). Discrete approximation related to nonlinear theories of solids. International Journal of Solids and Structures, 7(11), 1581–1599. https://doi.org/10.1016/0020-7683(71)90038-2

Yeoh, O. H. (1990). Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates. Rubber Chemistry and Technology, 63(5), 792–805. https://doi.org/10.5254/1.3538289

Published

07/08/2022

How to Cite

PERÔNICA, D. S. .; MACIEL, D. N. .; BARROS, R.; NASCIMENTO NETO, J. A. do .; SILVA FILHO, J. N. da. Nonlinear analysis of trusses considering hyperelastic models by the positional finite element method. Research, Society and Development, [S. l.], v. 11, n. 10, p. e449111032684, 2022. DOI: 10.33448/rsd-v11i10.32684. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32684. Acesso em: 23 nov. 2024.

Issue

Section

Engineerings