Environmental elimination estimate and literature review of ecotoxicological aspects of the main widely used antiretrovirals in Brazil

Authors

DOI:

https://doi.org/10.33448/rsd-v11i10.32975

Keywords:

Antiretrovirals; Ecotoxicology; Environment.

Abstract

Objective: To estimate the consumption and quantity of unaltered antiretrivirals (ARV) eliminated into the environment and to carry out a literature research on aquatic ecotoxicological studies of ARV used in Brazil. Methodology: We requested from one of the ARV dispensing units in the city of Belo-Horizonte (BH) the amount of ARV dispensed in the years 2018-2019-2020. Considering the amount dispensed in 2020, the daily dose, and the elimination rate, the amount of drug in unchanged form in the environment was estimated. For entire municipality of BH and Brazil, we used epidemiological data were used regarding individuals using antiretroviral therapy (ART) in 2020, the proportion of people living with HIV using the main ART regimen, following the same estimation methodology used previously. Structured and individual searches were carried out for each ARV used in Brazil, relating it to ecotoxicology, through Google Scholar, National Center for Biotechnology Information and Scifinder, in addition to the use of the fass.se platform. Results: Four articles presented results of acute or chronic toxicity in ecotoxicological models involving ARV. Dolutegravir and efavirenz were found to be highly toxic in ecotoxicological models. In 2020, approximately 2,167kg of ARVs in unchanged form were released into the environment in BH. In Brazil it was 112,274kg. Conclusion: It is urgent to quantify the main ARV in water bodies. With these data together with ecotoxicological data it will be possible to establish risk criteria for possible measures to control or mitigate these contaminants in the environment, especially actions to improve wastewater/water treatment.

References

ABNT. (2022). Entidade responsável pela elaboração das Normas Brasileiras (ABNT NBR), elaboradas por seus Comitês Brasileiros (ABNT/CB), Organismos de Normalização Setorial (ABNT/ONS) e Comissões de Estudo Especiais (ABNT/CEE). Associação Brasileira de Normas técnicas website: https://www.abnt.org.br/

Akkari, A. C. S., Munhoz, I. P., Tomioka, J., Dos Santos, N. M. B. F., & Dos Santos, R. F. (2016). Inovação tecnológica na indústria farmacêutica: Diferenças entre a Europa, os EUA e os países farmaemergentes. Gestao e Producao, 23(2), 365–380. https://doi.org/10.1590/0104-530X2150-15

Aquino, S. F., Brandt, E. M. F., & Chernicharo, C. A. de L. (2013). Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto: Revisão da literatura. Engenharia Sanitaria e Ambiental, 18(3), 187–204. https://doi.org/10.1590/S1413-41522013000300002

BRASIL. (2019). Relação Nacional de Medicamentos Essenciais 2020 (M. da Saúde, Ed.). Brasília-DF: Ministério da Saúde. Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde. Departamento de Assistência Estratégicos, Farmacêutica e Insumos.

BRASIL. (2020). Boletim Epidemiológico HIV / Aids | 2020. Secretaria de Vigilância Em Saúde / Ministério Da Saúde, 1, 68. http://www.aids.gov.br/pt-br/pub/2020/boletim-epidemiologico-hivaids-2020

BRASIL. (2022). Vigilância Epidemiológica - Indicadores clínicos do HIV. Departamento de Doenças de Condições Crônicas e Infecções Sexualmente Transmissíveis. Miistério da Saúde website: http://www.aids.gov.br/pt-br/publico-geral/hiv/vigilancia-epidemiologica

Brito, N. N., & Marinho Silva, V. B. (2012). Processo Oxidativo Avançado E Sua Aplicação Ambiental. REEC - Revista Eletrônica de Engenharia Civil, 3(1), 36–47. https://doi.org/10.5216/reec.v3i1.17000

CONAMA. (2005). Resolução 357/2005. Dispõe Sobre a Classificação Dos Corpos de Água e Diretrizes Ambientais Para o Seu Enquadramento, Bem Como Estabelece as Condições e Padrões de Lançamento de Efluentes, e Dá Outras Providências., (53), 58–63.

CONAMA. (2011a). Resolução 430/2011. Dispõe Sobre Condições e Padrões de Lançamento de Efluentes, Complementa e Altera a Resolução No 357, de 17 de Março de 2005, Do Conselho Nacional Do Meio Ambiente - CONAMA., (92), 89.

CONAMA. Resolução CONAMA n° 430, de 13 de Maio de 2011. , Diário Oficial da União § (2011).

Costa, C. R., Olivi, P., Botta, C. M. R., & Espindola, E. L. G. (2008). A toxicidade em ambientes aquáticos: Discussão e métodos de avaliação. Química Nova, 31(7), 1820–1830. http://static.sites.sbq.org.br/quimicanova.sbq.org.br/pdf/Vol31No7_1820_37-RV07485.pdf

Cronin, M. A., & George, E. (2020). The Why and How of the Integrative Review. Organizational Research Methods, 1–25. https://doi.org/10.1177/1094428120935507

FASS. (2016). FASS.SE. In Collaborative Website of Swedish Pharmaceutical Companies That Provides Information about Medicines Marketed in Sweden. Retrieved from https://www.fass.se/LIF/startpage

Fioreze, M., Santos, E. P. dos, & Schmachtenberg, N. (2014). Processos oxidativos avançados: Fundamentos e aplicação ambiental. Revista Eletrônica Em Gestão, Educação e Tecnologia Ambiental, 18(1), 79–91. https://doi.org/10.5902/2236117010662

Gazola, L. (2020). Análise das legislações estaduais brasileiras sob ensaios ecotoxicológicos como ferramenta no controle de lançamento de efluentes industriais (Dissertação de mestrado - Universidade Federal de Santa Catarina). https://repositorio.ufsc.br/bitstream/handle/123456789/216418/PPCA0047-D.pdf?sequence=-1&isAllowed=y

Instituto Trata Brasil. (2021). Ranking Do Saneamento Instituto Trata Brasil 2021 (Snis 2019) (Vol. 2021). https://tratabrasil.org.br/images/estudos/Ranking_saneamento_2021/Relatório_-_Ranking_Trata_Brasil_2021_v2.pdf

Jain, S., Kumar, P., Vyas, R. K., Pandit, P., & Dalai, A. K. (2013). Occurrence and removal of antiviral drugs in environment: A review. Water, Air, and Soil Pollution, 224(2). https://doi.org/10.1007/s11270-012-1410-3

Kornis, G. E. M., Braga, M. H., & de Paula, P. A. B. (2014). Transformações recentes da indústria farmacêutica: Um exame da experiência mundial e Brasileira no século XXI. Physis, 24(3), 885–908. https://doi.org/10.1590/S0103-73312014000300012

Kumar, M., Mazumder, P., Mohapatra, S., Kumar Thakur, A., Dhangar, K., Taki, K., & Kuroda, K. (2021). A chronicle of SARS-CoV-2: Seasonality, environmental fate, transport, inactivation, and antiviral drug resistance. Journal of Hazardous Materials, 405(336). https://doi.org/10.1016/j.jhazmat.2020.124043

Magalhães, D. de P., & Ferrão-Filho, A. da S. (2008). A Ecotoxicologia como ferramenta no Biomonitoramento de Ecossistemas Aquáticos. Oecologia Australis, 12(03), 355–381. https://doi.org/10.4257/oeco.2008.1203.02

Minguez, L., Pedelucq, J., Farcy, E., Ballandonne, C., Budzinski, H., & Halm-Lemeille, M. P. (2016). Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environmental Science and Pollution Research, 23(6), 4992–5001. https://doi.org/10.1007/s11356-014-3662-5

Muriuki, C., Kairigo, P., Home, P., Ngumba, E., Raude, J., Gachanja, A., & Tuhkanen, T. (2020). Mass loading, distribution, and removal of antibiotics and antiretroviral drugs in selected wastewater treatment plants in Kenya. Science of the Total Environment, 743, 140655. https://doi.org/10.1016/j.scitotenv.2020.140655

Nannou, C., Ofrydopoulou, A., Evgenidou, E., Heath, D., Heath, E., & Lambropoulou, D. (2020). Antiviral drugs in aquatic environment and wastewater treatment plants: A review on occurrence, fate, removal and ecotoxicity. Science of the Total Environment, 699, 134322. https://doi.org/10.1016/j.scitotenv.2019.134322

Ncube, S., Madikizela, L. M., Chimuka, L., & Nindi, M. M. (2018). Environmental fate and ecotoxicological effects of antiretrovirals: A current global status and future perspectives. Water Research, Vol. 145, pp. 231–247. https://doi.org/10.1016/j.watres.2018.08.017

Nibamureke, U. M. C., Barnhoorn, I. E. J., & Wagenaar, G. M. (2019). Hatching success and survival of fish early life stages in a chronic exposure to nevirapine: a case study of the Mozambique tilapia. International Journal of Environmental Health Research, 29(4), 441–456. https://doi.org/10.1080/09603123.2018.1548697

Prasse, C., Schlüsener, M. P., Schulz, R., & Ternes, T. A. (2010). Antiviral drugs in wastewater and surface waters: A new pharmaceutical class of environmental relevance? Environmental Science and Technology, 44(5), 1728–1735. https://doi.org/10.1021/es903216p

Rashed, M. N. et al. (2022). Persistent Organic Pollutants (POPs). https://doi.org/10.5772/intechopen.95151

Robson, L., Barnhoorn, I. E. J., & Wagenaar, G. M. (2017). The potential effects of efavirenz on Oreochromis mossambicus after acute exposure. Environmental Toxicology and Pharmacology, 56(September), 225–232. https://doi.org/10.1016/j.etap.2017.09.017

Schoeman, C., Dlamini, M., & Okonkwo, O. J. (2017). The impact of a Wastewater Treatment Works in Southern Gauteng, South Africa on efavirenz and nevirapine discharges into the aquatic environment. Emerging Contaminants, 3(2), 95–106. https://doi.org/10.1016/j.emcon.2017.09.001

Souza, S. J. O., Lobo, T. M., Sabino, A. L. O., Oliveira, S. B., & Costa, O. S. (2010). Decomposição dos Antirretrovirais Lamivudina e Zidovudina pelo Processo Fotofenton Assistido no Efluente de Indústria Farmoquímica. Revista Processos Químicos, 4(7), 59–67. https://doi.org/10.19142/rpq.v4i7.108

Tang, Y., Yin, M., Yang, W., Li, H., Zhong, Y., Mo, L., & Sun, X. (2019). Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment. Water Environment Research, 91(10), 984–991. https://doi.org/10.1002/wer.1163

UNAIDS. (2021). Global Hiv Statistics. https://www.unaids.org/en/resources/fact-sheet

Von Sperling, M. (1996). Princípio do tratamento biológico de águas residuárias (2nd ed.). Belo Horizonte.

Whittemore, R., & Knafl, K. (2005). The integrative review: Updated methodology. Journal of Advanced Nursing, 52(5), 546–553. https://doi.org/10.1111/j.1365-2648.2005.03621.x

Zagatto, P. A., & Bertoletti, E. (2006). Ecotoxicologia aquática: princípios e aplicações (Primeira; E. Rima, Ed.). São Carlos.

Zenker, A., Cicero, M. R., Prestinaci, F., Bottoni, P., & Carere, M. (2014). Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. Journal of Environmental Management, 133, 378–387. https://doi.org/10.1016/j.jenvman.2013.12.017

Zucker, E. (1985). Acute toxicity test for freshwater invertebrates. Hazard Evaluation Division, Standard Evaluation Procedure, (June), 1–12.

Downloads

Published

04/08/2022

How to Cite

SOUZA, C. R.; RIBEIRO, M. de F. .; SOARES, M. de F. .; SANTOS, S. F. dos .; PEREIRA, C. A. de J. .; MOL, M. P. G. .; SILVEIRA, M. R. . Environmental elimination estimate and literature review of ecotoxicological aspects of the main widely used antiretrovirals in Brazil. Research, Society and Development, [S. l.], v. 11, n. 10, p. e368111032975, 2022. DOI: 10.33448/rsd-v11i10.32975. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32975. Acesso em: 3 jan. 2025.

Issue

Section

Review Article