Biodegradation of diesel oil by Penicillium citrinum UCP 1183 isolated from mangrove sediments

Authors

DOI:

https://doi.org/10.33448/rsd-v11i10.33071

Keywords:

Filamentous fungus; Bioremediation; Petroderivative; DCPIP.

Abstract

Biodegradation is a very effective technology that can be used to recover areas impacted with petroderivatives. In this context, the aim of this work was to investigate the potential of Penicillium sp. (isolated from mangrove sediments in the state of Pernambuco) in the biodegradation of diesel oil. Identification of specie was performed by analyzing the macromorphological and micromorphological structures. The biodegradation study was carried out in Bushnell Haas medium containing the redox indicator 2,6-dichlorophenol indophenol (DCPIP) and the fungus previously acclimated to different concentrations of burnt motor oil. The assay was incubated under static conditions and darkness for 72 h and every 24 h the biodegradation of the petroderivative was verified by UV-Vis spectrophotometry at 600 nm. The characteristics of the fungus indicated that the isolate is Penicillium citrinum. In the acclimation stage, P. citrinum grew in all tested concentrations of burnt motor oil (5, 10, 15 and 20%). In addition, the fungus was able to degrade diesel oil by the proven oxidation-reduction reaction indicated by the change in the color of the indicator from blue (oxidized form) to colorless (reduced form). The spectrophotometric analysis verified the occurrence of the biodegradation of diesel oil, resulting in the maximum value (70%) after 72 h. The present work demonstrates that the mangrove sediment isolate was identified as P. citrinum and it has promising potential for use in diesel oil biodegradation processes in impacted areas.

References

Alao, M. B., & Adebayo, E. A. (2022). Fungi as veritable tool in bioremediation of polycyclic aromatic hydrocarbons‐polluted wastewater. Journal of Basic Microbiology, 62(3-4), 223-244.

Al-dhabaan, F. A. (2021). Micorremediação de solo contaminado com petróleo bruto por fungos específicos isolados de Dhahran na Arábia Saudita. Saudi Journal of Biological Sciences, 28(1), 73-77.

Al-hawash, A. B., Alkooranee, J. T., Abbood, H. A., Zhang, J., Sun, J., Zhang, X., & Ma, F. (2018). Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field, Iraq. Biotechnology reports, 17, 104-109.

Al-Nasrawi, H. (2012). Biodegradation of crude oil by fungi isolated from Gulf of Mexico. J Bioremed Biodegrad, 3(4), 147-52.

Al-otibi, F., Al-zahrani, R. M., & Marraiki, N. (2022). The crude oil biodegradation activity of Candida strains isolated from oil-reservoirs soils in Saudi Arabia. Scientific Reports.

Atakpa, E. O., Zhou, H., Jiang, L., Ma, Y., Liang, Y., Li, Y., Zhang, D., & Zhang, C. (2022). Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria. Chemosphere, 290, 133337.

Behera, B. C., Mishra, R. R., & Thatoi, H. N. (2012). Diversity of soil fungi from mangroves of Mahanadi delta, Orissa, India. Journal of Microbiology and Biotechnology Research, 2, 375-378.

Benguenab, A., & Chibani, A. (2021). Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil contaminated soil. Acta Ecologica Sinica, 41 (5), 416-423.

da Silva, P. G. O., de Souza Mendonça, R., Costa, E. R. C., Campos-Takaki, G. M., da Silva Andrade, R. F., & Rodríguez, D. M. (2022). Bioprospecção de fungos filamentosos isolados de sedimentos de manguezais do estado de Pernambuco para biodegradação de petroderivados. Pesquisa, Sociedade e Desenvolvimento, 11(9), e11311931559-e11311931559.

dos Anjos, N. A., de Lima, S. D., de Paula Rothebarth, A. V., de Lima, Z. M., Caixeta, D. S., & de Morais, E. B. (2018). Bioremediation of diesel/biodiesel contaminated sandy soil in microcosm: evaluation of fungal bioaugmentation and natural attenuation. Acta Scientiarum. Biological Sciences, 40, e39468-e39468.

El-Aziz, A. R. A., Al-Othman, M. R., Hisham, S. M., & Shehata, S. M. (2021). Evaluation of crude oil biodegradation using mixed fungal cultures. PloS one, 16(8), e0256376.

Frisvad, J. C., & Samson, R. A. (2004). Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Studies in mycology, 49(1), 1-174.

Govarthanan, M., Fuzisawa, S., Hosogai, T., & Chang, Y. C. (2017). Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. The Royal Society of Chemistry advances, 7 (34), 20716-20723, 2017.

HamidI, Y., Ataei, S. A., & Sarrafi, A., (2021). Biodegradation of total petroleum hydrocarbons in oily sludge: a comparative study of biostimulation, bioaugmentation, and combination of methods. Journal of Chemical Technology & Biotechnology, 96 (5), 1302-1307.

Houbraken, J. A., Frisvad, J. C., & Samson, R. A. (2010). Taxonomy of Penicillium citrinum and related species. Fungal Diversity, 44(1), 117-133.

Houbraken, J., Frisvad, J. C., & samson, R. A. (2011). Taxonomy of penicillium section citrina. Studies in mycology, 70, 53-138.

Kong, X., Dong, R., King, T., Chen, F., & Li, H. (2022). Biodegradation Potential of Bacillus sp. PAH-2 on PAHs for Oil-Contaminated Seawater. Molecules, 27 (3), 687.

Liu, H., Yang, G., Jia, H., & Sun, B. (2022). Crude oil degradation by a novel strain Pseudomonas aeruginosa AQNU-1 isolated from an oil-contaminated lake Wetland. Behavioural Processes, 10 (2), 307.

Molaei, S., Moussavi, G., Talebbeydokhti, N., & Shekoohiyan, S. (2022). Biodegradation of the petroleum hydrocarbons using an anoxic packed-bed biofilm reactor with in-situ biosurfactant-producing bacteria. Journal of Hazardous Materials, 421, 126699.

Montero-Rodríguez, D., Andrade, R. F. S., Ribeiro, D. L. R., Lima, R. A., Araujo, H. W. C., & Campos-Takaki, G. M. (2014). Ability of Serratia marcescens UCP/WFCC 1549 for biosurfactant production using industrial wastes and fuels biodegradation In: Industrial, medical and environmental applications of microorganisms: Current status and trends. Madrid, 211-216.

Olicón-Hernández, D. R., Camacho-Morales, R. L., Pozo, C., González-López, J., & Aranda, E. (2019). Evaluation of diclofenac biodegradation by the ascomycete fungus Penicillium oxalicum at flask and bench bioreactor scales. Science of The Total Environment, 662, 607-614.

Passos, C. T. D., Burkert, J. F. D. M., Kalil, S. J., & Burkert, C. A. V. (2009). Biodegradação de fenol por uma nova linhagem de Aspergillus sp. isolada de um solo contaminado do sul do Brasil. Química Nova, 32, 950-954.

Phulpoto, I. A., Hu, B., Wang, Y., Ndayisenga, F., Li, J., & Yu, Z. (2021). Effect of natural microbiome and culturable biosurfactants-producing bacterial consortia of freshwater lake on petroleum-hydrocarbon degradation. Science of the Total Environment, 751, 141720.

Pitt, J. I. A laboratory guide to common Penicillium species. Food Science Australia, 2000.

Popoola, L. T., Yusuff, A. S., Adeyi, A. A., & Omotara, O. O. (2022). Bioaugmentation and biostimulation of crude oil contaminated soil: Process parameters influence. South African Journal of Chemical Engineering, 39, 12-18.

Ra, T., Zhao, Y., & zheng, M. (2019). Comparative study on the petroleum crude oil degradation potential of microbes from petroleum-contaminated soil and non-contaminated soil. International Journal of Environmental Science and Technology, 16(11), 7127-7136.

Ramdass, A. C., & Rampersad, S. N. (2021). Diversity and oil degradation potential of culturable microbes isolated from chronically contaminated soils in Trinidad. Microorganisms, 9(6), 1167.

Rodrigues, R. V., Miranda-Filho, K. C., Gusmão, E. P., Moreira, C. B., Romano, L. A., & Sampaio, L. A (2010). Deleterious effects of water-soluble fraction of petroleum, diesel and gasoline on marine pejerrey Odontesthes argentinensis larvae. Science of the Total Environment, 408(9), 2054-2059.

Romero-Hernández, L., Velez, P., Betanzo-Gutiérrez, I., Camacho-López, M. D., Vázquez-Duhalt, R., & Riquelme, M. (2021). Extra-heavy crude oil degradation by Alternaria sp. isolated from deep-sea sediments of the Gulf of Mexico. Applied Sciences, 11 (13), 6090.

Sánchez, C. (2020). Fungal potential for the degradation of petroleum-based polymers: An overview of macro-and microplastics biodegradation. Biotechnology advances, 40, 107501.

Seydametova, E., Zainol, N., Salihon, J., & Convey, P. (2015). Mangrove rhizosphere soils: a unique natural source of pravastatin-producing Penicillium microfungi. International Journal of Extensive Research, 5, 79-87.

Tiwari, M; Saraf, A; & Shrivastava, Meghna. (2020). Comparative In Vitro Assessment of Hydrocarbon Degradation Potential of Pleurotus ostreatus MP 5 and Pleurotus ostreatus MTCC 1804. Nature Environment & Pollution Technology, 19 (1).

Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., Seifert, K. A., Varga, J., Yaguchi, T., & Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in mycology, 53(1), 53-62.

Wahab, A. A., Awang, A. S. A. H., Azham, Z., Tay, M. G., & Adeyemi, F. M. (2017). Biosorption of lead (II) ion using Penicillium citrinum KR706304 isolated from the mangrove soil environment of southeast Borneo. Ife Journal of Science, 19(2), 341-351.

Wojtowicz, K., Steliga, T., Kapusta, P., Brzeszcz, J., & Skalski, T. (2022). Evaluation of the Effectiveness of the Biopreparation in Combination with the Polymer γ-PGA for the Biodegradation of Petroleum Contaminants in Soil. Materials Research, 15(2), 400.

Published

11/08/2022

How to Cite

COSTA, E. R. C. .; SOUZA, A. F. de; RODRÍGUEZ , D. M. .; MENDONÇA , R. de S. .; SILVA, A. K. D. da .; TAKAKI, G. M. de C. .; ANDRADE, R. F. da S. . Biodegradation of diesel oil by Penicillium citrinum UCP 1183 isolated from mangrove sediments. Research, Society and Development, [S. l.], v. 11, n. 10, p. e573111033071, 2022. DOI: 10.33448/rsd-v11i10.33071. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33071. Acesso em: 22 nov. 2024.

Issue

Section

Agrarian and Biological Sciences