Impact of no-tillage and straw on detritivorous arthropods on the surface on the soil in bean crops
DOI:
https://doi.org/10.33448/rsd-v11i11.33321Keywords:
Phaseolus vulgaris; Planting system; Collembola; Coleoptera; Abundance.Abstract
Detritivorous arthropods are essential because they participate in recycling organic matter, decomposing pesticides, improving soil properties, conserving water, and reducing problems with plant diseases. Practices such as no-till and straw on soils can affect soil properties and populations of detritivorous arthropods. Brazil is the largest producer and consumer of common beans (Phaseolus vulgaris). Thus, this work aimed to determine the impact of no-till and straw planting on detritivorous arthropods on the "surface over ground" in common bean crops. In this way, common beans were cultivated in tillage and no-till with and without straw on the soil. During cultivation, the density of detritivorous arthropods on the soil was monitored using a pitfall trap. Sixteen morphospecies of detritivorous arthropods were observed on the surface of the ground. No-tillage and straw did not affect the number of detritivorous arthropod species. The most abundant morphospecies was the Collembola Entomobryidae and Hypogastrura sp. and the Coleoptera Scarabaeidae and Colopterus spp. No-till and straw positively affected the abundance of detritivorous arthropods. Therefore, no-tillage and straw in bean crops provide conditions for increasing detritivorous arthropod populations, improving soil properties.
References
Altmann, N. (2010). Plantio direto no cerrado: 25 anos acreditando no sistema. Editora Aldeia Norte
Andrén, O., & Schnürer, J. (1985). Barley straw decomposition with varied levels of microbial grazing by Folsomia fimetaria (L.) (Collembola, Isotomidae). Oecologia, 68(1), 57-62.
Badji, C. A., Guedes, R. N. C., Silva, A. A., & Araújo, R. A. (2004). Impact of deltamethrin on arthropods in maize under conventional and no-tillage cultivation. Crop Protection, 23(11), 1031-1039. https://doi.org/10.1016/j.cropro.2004.03.003
Bouchard, M., & Hébert, C. (2016). Beetle community response to residual forest patch size in managed boreal forest landscapes: Feeding habits matter. Forest Ecology and Management, 368, 63-70. https://doi.org/10.1016/j.foreco.2016.02.029
Brown, G. R., & Matthews, I. M. (2016). A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground‐active arthropod biodiversity. Ecology and Evolution, 6(12), 3953-3964. http://dx.doi.org/10.1002/ece3.2176
Carneiro J. E., Paula Jr, T. P., & Borém, A. (2015). Feijão do plantio à colheita. Editora UFV.
Carpio, A. J., Castro, J., & Tortosa, F. S. (2019). Arthropod biodiversity in olive groves under two soil management systems: presence versus absence of herbaceous cover crop. Agricultural and Forest Entomology, 21(1), 58-68. http://dx.doi.org/10.1111/afe.12303
Chang, L., Song, X., Wang, B., Wu, D., & Reddy, G. V. (2020). Effect of Bt Corn (Bt 38) Cultivation on Community Structure of Collembola. Annals of the Entomological Society of America, 113(1), 1-5. http://dx.doi.org/10.1093/aesa/saz038
Chen, B., & Wise, D. H. (1999). Bottom‐up limitation of predaceous arthropods in a detritus‐based terrestrial food web. Ecology, 80(3), 761-772. https://doi.org/10.1890/0012-9658(1999)080[0761:BULOPA]2.0.CO;2
Coulibaly, S. F., Coudrain, V., Hedde, M., Brunet, N., Mary, B., Recous, S., & Chauvat, M. (2017). Effect of different crop management practices on soil Collembola assemblages: A 4-year follow-up. Applied Soil Ecology, 119, 354-366. https://doi.org/10.1016/j.apsoil.2017.06.013
Dittmer, S., & Schrader, S. (2000). Longterm effects of soil compaction and tillage on Collembola and straw decomposition in arable soil. Pedobiologia, 44(3-4), 527-538. https://doi.org/10.1078/S0031-4056(04)70069-4
FAO - Food and Agriculture Organization of the United Nations. (2020). FAOSTAT: Statistics database. http://www.fao.org/faostat/en/#data/QC
Frizzas, M. R., Oliveira, C. M. D., & Omoto, C. (2017). Diversity of insects under the effect of Bt maize and insecticides. Arquivos do Instituto Biológico, 84, e0062015. https://doi.org/10.1590/1808-1657000062015
Galvão J. C. C., Borém, A., & Pimentel, M. A. (2017). Milho do plantio à colheita. 2 ed. Editora UFV.
Gkisakis, V., Volakakis, N., Kollaros, D., Bàrberi, P., & Kabourakis, E. M. (2016). Soil arthropod community in the olive agroecosystem: Determined by environment and farming practices in different management systems and agroecological zones. Agriculture, Ecosystems & Environment, 218, 178-189. https://doi.org/10.1016/j.agee.2015.11.026
Gonçalves, F., Carlos, C., Crespo, L., Zina, V., Oliveira, A., Salvação, J., Pereira J. A., & Torres, L. (2021). Soil Arthropods in the douro demarcated region vineyards: general characteristics and ecosystem services provided. Sustainability, 13(14), 7837. https://doi.org/10.3390/su13147837
Gruss, I., Twardowski, J. P., Latawiec, A., Królczyk, J., & Medyńska-Juraszek, A. (2019). The effect of biochar used as soil amendment on morphological diversity of Collembola. Sustainability, 11(18), 5126. http://dx.doi.org/10.3390/su11185126
Hohbein, R. R., & Conway, C. J. (2018). Pitfall traps: A review of methods for estimating arthropod abundance. Wildlife Society Bulletin, 42(4), 597-606. http://dx.doi.org/10.1002/wsb.928
House, G. J., & Stinner, B. R. (1983). Arthropods in no-tillage soybean agroecosystems: community composition and ecosystem interactions. Environmental Management, 7(1), 23-28. https://doi.org/10.1007/s41348-017-0111-y
Innocenti, G., & Sabatini, M. A. (2018). Collembola and plant pathogenic, antagonistic and arbuscular mycorrhizal fungi: A review. Bulletin of Insectology, 71(1), 71-76.
Legendre, P., Oksanen, J., & Ter Braak, C. J. (2011). Testing the significance of canonical axes in redundancy analysis. Methods in Ecology and Evolution, 2(3), 269-277. http://dx.doi.org/10.1111/j.2041-210X.2010.00078.x
Legendre, P., & Birks, H. J. B. (2012). From classical to canonical ordination. In: Tracking environmental change using lake sediments (pp. 201-248). Springer, Dordrecht.
Livia-Tacza, C., & Sánchez, G. (2020). Soil arthropods associated with sweetpotato crop (Ipomoea batata L.) in La Molina, Lima, Peru. Peruvian Journal of Agronomy, 4(1), 1-9. http://dx.doi.org/10.21704/pja.v4i1.1438
Meli, M., Palmqvist, A., & Forbes, V. E. (2014). Implications of interacting microscale habitat heterogeneity and disturbance events on Folsomia candida (Collembola) population dynamics: a modeling approach. Environmental Toxicology and Chemistry, 33(7), 1508-1516. http://dx.doi.org/10.1002/etc.2552
Mereta, S. T., Boets, P., Bayih, A. A., Malu, A., Ephrem, Z., Sisay, A., Endale H., Yitbarek, M., Jemal, A., Meesterc, L., & Goethals, P. L. M. (2012). Analysis of environmental factors determining the abundance and diversity of macroinvertebrate taxa in natural wetlands of Southwest Ethiopia. Ecological Informatics, 7(1), 52-61. https://doi.org/10.1016/j.ecoinf.2011.11.005
Meyer-Wolfarth, F., Schrader, S., Oldenburg, E., Weinert, J., & Brunotte, J. (2017). Collembolans and soil nematodes as biological regulators of the plant pathogen Fusarium culmorum. Journal of Plant Diseases and Protection, 124(5), 493-498.
Mint, C. (2012). Soil fauna diversity-function, soil degradation, biological indices, soil restoration. In: Biodiversity conservation and utilization in a diverse world (pp. 59-94). BoD–Books on Demand.
Müller, P., Neuhoff, D., Nabel, M., Schiffers, K., & Döring, T. F. (2022). Tillage effects on ground beetles in temperate climates: a review. Agronomy for Sustainable Development, 42(4), 1-20. https://doi.org/10.1007/s13593-022-00803-6
Pereira, J. L., Picanço, M. C., Pereira, E. J. G., Silva, A. A., Jakelaitis, A., Pereira, R. R., & Xavier, V. M. (2010). Influence of crop management practices on bean foliage arthropods. Bulletin of Entomological Research, 100(6), 679-688. http://dx.doi.org/10.1017/S0007485310000039
Pereira J. L., Moreira, M. D., Santana Jr., P. A., Lopes, M. C., Ramos R. S., Silva A. A., & Picanço, M. C. (2017). Impact of the cultivation systems and straw on the soil surface on the edaphic entomofauna in common bean crops. Australian Journal of Basic and Applied Sciences, 11(2), 6-15.
Pereira, J. L., Lopes, M. C., Parish, J. B., Silva, A. A., & Picanço, M. C. (2018). Impact of RR soybeans and glyphosate on the community of soil surface arthropods. Planta Daninha, 36, e018171324. http://dx.doi.org/10.1590/S0100-83582018360100071
Pimentel, D., & Wheeler Jr, A. G. (1973). Species and diversity of arthropods in the alfalfa community. Environmental Entomology, 2(4), 659-668. https://doi.org/10.1093/ee/2.4.659
Popescu, E., & Golubev I. (2012). Beans: Nutrition, consumption and health. Nova Science Pub Inc.
Prasifka, J. R., Lopez, M. D., Hellmich, R. L., Lewis, L. C., & Dively, G. P. (2007). Comparison of pitfall traps and litter bags for sampling ground‐dwelling arthropods. Journal of Applied Entomology, 131(2), 115-120. http://dx.doi.org/10.1111/j.1439-0418.2006.01141.x
Raghuraman, M., & Mishra, V. K. (2017). Collembola as indicator of soil health. Journal of Insect Science (Ludhiana), 30(2), 166-170.
Ramezani, L., & Mossadegh, M. S. (2017). The effect of cropping on diversity and density of springtails (Hexapoda: Collembola) in Khuzestan province, Southwest of Iran. IAU Entomological Research Journal, 8(4), 301-307.
Rondon, S. I., Price, J. F., Cantliffe, D. J., & Renkema, J. M. (2011). Sap beetle (Coleoptera: Nitidulidae) management in strawberries. Gainesville: University of Florida.
Sannigrahi, S., Zhang, Q., Pilla, F., Joshi, P. K., Basu, B., Keesstra, S., & Sen, S. (2020). Responses of ecosystem services to natural and anthropogenic forcings: A spatial regression based assessment in the world's largest mangrove ecosystem. Science of the Total Environment, 715, 137004. https://doi.org/10.1016/j.scitotenv.2020.137004
SAS Institute. (2009). SAS/STAT user’s guide, vol 9. SAS, Cary.
Seastedt, T. R., &Crossley Jr, D. A. (1984). The influence of arthropods on ecosystems. Bioscience, 34(3), 157-161. https://doi.org/10.2307/1309750
Vieira, R. F., Paula Jr, T. J., Jacob, L. L., Lehner, M. S., Santos, J. D. (2011). Desempenho de genótipos de feijão-mungo-verde semeados no inverno na Zona da Mata de Minas Gerais. Revista Ceres, 58, 402-405. https://doi.org/10.1590/S0034-737X2011000300022
Wang, M., Zhang, W., Xia, H., Huang, J., Wu, Z., & Xu, G. (2017). Effect of Collembola on mineralization of litter and soil organic matter. Biology and Fertility of Soils, 53(5), 563-571. https://doi.org/10.1007/s00374-017-
Zaller, J. G., König, N., Tiefenbacher, A., Muraoka, Y., Querner, P., Ratzenböck, A., Bonkowski, M., & Koller, R. (2016). Pesticide seed dressings can affect the activity of various soil organisms and reduce decomposition of plant material. BMC ecology, 16(1), 1-11. https://doi.org/10.1186/s12898-016-0092-x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Jardel Lopes Pereira; Márcio Dionizio Moreira; Antônio Alberto da Silva; Adriano Jakelaitis; Mayara Moledo Picanço; Poliana Silvestre Pereira; Marcelo Coutinho Picanço
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.