Design of an Inverter-Based OTA Based on a 130 nm CMOS Process

Authors

DOI:

https://doi.org/10.33448/rsd-v9i6.3334

Keywords:

Operational amplifiers; CMOS inverters; Differential transconductance; Threshold voltage; Mismatch.

Abstract

In manufacturing processes of integrated differential amplifiers, an inherent characteristic is that the fabricated nMOS and pMOS transistors have physical differences in relation to the projected values, an effect known as mismatch. In this work, the manufacturing process variations in operational transconductance amplifiers (OTA) are evaluated. Two OTA based on CMOS inverters are designed using both low threshold and standard threshold uniformly doped transistors using quantitative experimental research.

References

Andreani, P., & Mattisson, S. (2002). On the use of Nauta’s transconductor in low-frequency CMOS gm-C bandpass filters. IEEE Journal of Solid-State Circuits, 37(2), 114–124.

Barthélemy, H.; Meillère, S.; Gaubert, J.; Dehaese, N.; Bourdel, S. (2008). OTA based on CMOS inverters and application in the design of tunable bandpass filter. Analog Integrated Circuits and Signal Processing, v. 57, n. 3, p. 169–178, 2008.

Braga, R. A., Ferreira, L. H., Colletta, G. D., & Dutra, O. O. (2019). A 0.25-V calibration-less inverter-based OTA for low-frequency Gm-C applications. Microelectronics Journal, 83, 62–72.

Braga, R. A., Ferreira, L. H., Colletta, G. D., & Dutra, O. O. (2017). Calibration-less Nauta OTA operating at 0.25-V power supply in a 130-nm digital CMOS process. In 2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS) (pp. 1–4).

Braga, R. A. S. (2018). Uma Topologia CMOS Nauta OTA sem Calibração em Ultra-Baixa Tensão e Ultra-Baixa Potência. Universidade Federal de Itajubá.

Crombez, P., Craninckx, J., Wambacq, P., & Steyaert, M. (2008). A 100-kHz to 20-MHz reconfigurable power-linearity optimized gm-C biquad in 0.13-µm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(3), 224–228.

Dresch, A., Lacerda, D. P., & Júnior, J. A. V. A. (2015). Design science research: método de pesquisa para avançoda ciência e tecnologia. Bookman Editora.

Munoz, F., Torralba, A., Carvajal, R., Tombs, J., & Ramirez Angulo, J. (2001). Floating-gate-based tunable CMOS low-voltage linear transconductor and its application to HF gm-C filter design. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(1), 106–110.

Nauta, B. (1992). A CMOS transconductance-C filter technique for very high frequencies. IEEE Journal of Solid-State Circuits, 27(2), 142–153.

Nicholson, A. P., Iberzanov, A., Jenkins, J., Hamilton, T. J., & Lehmann, T. (2016). A statistical Design Approach for a Digitally Programmable Mismatch-Tolerant High-Speed Nauta Structure Differential OTA in 65- nm CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(9), 2899–2910.

Pereira, A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em:

https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 03 abr. 2020.

Pinto, P. M., Ferreira, L. H., Colletta, G. D., & Braga, R. A. (2019). A 0.25-V fifth-order butterworth low-pass filter based on fully differential difference transconductance amplifier architecture. Microelectronics Journal, 92, 104606.

Pirmohammadi, A., & Zarifi, M. H. (2012). A low power tunable Gm-C filter based on double CMOS inverters in 0.35-µm. Analog Integrated Circuits and Signal Processing, 71(3), 473–479.

Ramasamy, S., & Venkataramani, B. (2011). A low power reconfigurable analog baseband block for software defined radio. Journal of Signal Processing Systems, 62(2), 131–144.

Vlassis, S. (2012). 0.5V CMOS inverter-based tunable transconductor. Analog Integrated Circuits and Signal Processing, 72(1), 289

Published

12/04/2020

How to Cite

SILVA, O. S.; BRAGA, R. A. da S.; KAROLAK, D. B.; SILVA, P. M. M. e. Design of an Inverter-Based OTA Based on a 130 nm CMOS Process. Research, Society and Development, [S. l.], v. 9, n. 6, p. e51963334, 2020. DOI: 10.33448/rsd-v9i6.3334. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3334. Acesso em: 23 apr. 2024.

Issue

Section

Engineerings