Low-cost method for quantification of salicylic acid loaded in lipid nanoparticles containing copaiba oil





Acne vulgaris; Analytical method; Analytical validation; Lipid nanocarriers; UV-Visible Spectrophotometry; Vegetable bioactive.


The demand for analytical methods for drug quantification is an obstacle in the research and development of new products, due to the need to use simpler techniques for the identification and quantification of the actives. Although it is a very sensitive and selective technique for these determinations, high performance liquid chromatography (HPLC) requires expensive instrumentation and well-trained analysts, while spectrophotometry is fast, low-cost and hardly requires sample pre-treatment. Thus, this study aimed to develop a quantification method by UV-visible spectrophotometry for salicylic acid (SA) encapsulated in nanostructured lipid carriers (NLC) containing copaiba oil. The method was validated according to national and international criteria (ANVISA, ICH and FDA). The diluent was a mixture of absolute ethanol and phosphoric acid (99:1) and detection was performed at 310 nm. The interference of the matrix in relation to NLC-SA was minimal (0.37%), demonstrating the selectivity. Linearity was obtained in the range of 5.0 30.0 μg/mL (r = 0.99948) and the method proved to be accurate, with high recovery of SA in the presence of the other components (over 96% recovery), with precision at two levels: intra- and inter-days (DPR < 5%). Detection and quantification limits were 0.51 e 1.70 μg/mL, respectively. Finally, according to the Youden test criteria, the method was robust in the face of the proposed variations, obtaining effect values lower than the critical value (0.07). Therefore, the developed method is accessible, effective and valid for the quantification of SA in complex matrix lipid nanoparticles.


Abrão, L. C. de C., Silveira, A. T., de Faria, H. D., Machado, S. C., Mendes, T. V., Plácido, R. V., Marciano, L. P. de A., & Martins, I. (2020). Toxicological analyses: analytical method validation for prevention or diagnosis. Toxicology Mechanisms and Methods, 31(1), 18–32. Recovered from https://doi.org/10.1080/15376516.2020.1839612. doi: 10.1080/15376516.2020.1839612

Albuquerque, V. J. A., Reinaldo, A. T. G., Silva, D. A., Silva, S. G. F., Azevedo Filho, C. A., Lima, E. N., & Sousa, C. E. M. (2020). Development and validation of a method for quantification of sildenafil citrate in UV-HPLC. Brazilian Journal of Health Review, 3(1), 286–299. Recovered from https://doi.org/10.34119/bjhrv3n1-021. doi: 10.34119/bjhrv3n1-021

Almeida, O. P., Marcial, S. P. S., Gouveia, F. P. P., & Carneiro, G. (2017). Validation of a chromatographic analytical method for quantification of benznidazole incorporated in nanostructured lipid formulations. Journal of the Brazilian Chemical Society, 28(2), 236–241. Recovered from https://doi.org/10.5935/0103-5053.20160168. doi: 10.34119/bjhrv3n1-021

Agência Nacional de Vigilância Sanitária. (2003). Resolução RE no 899, de 29 de maio de 2003. Recovered from https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2003/res0899_29_05_2003.html.

Agência Nacional de Vigilância Sanitária. (2017). Resolução da Diretoria Colegiada (RDC) no 166, de 24 de julho de 2017. Recovered from http://portal.anvisa.gov.br/documents/10181/2721567/RDC_166_2017_COMP.pdf/d5fb92b3-6c6b-4130-8670-4e3263763401

Arruda, C., Aldana Mejía, J. A., Ribeiro, V. P., Gambeta Borges, C. H., Gomes Martins, C. H., Sola Veneziani, R. C., Ambrósio, S. R., & Bastos, J. K. (2019). Occurrence, chemical composition, biological activities and analytical methods on Copaifera genus—A review. Biomedicine and Pharmacotherapy, 109(July 2018), 1–20. Recovered from https://doi.org/10.1016/j.biopha.2018.10.030. doi: 10.1016/j.biopha.2018.10.030

Castro e Souza, M. A., Reis, N. F. A., de Souza Batista, L., da Costa César, I., Fernandes, C., & Pianetti, G. A. (2018). An Easy and Rapid Spectrophotometric Method for Determination of Chloroquine Diphosphate in Tablets. Current Pharmaceutical Analysis, 16(1), 5–11. Recovered from https://doi.org/10.2174/1573412914666180730123426. doi: 10.2174/1573412914666180730123426

César, I. D. C., & Pianetti, G. A. (2009). Robustness evaluation of the chromatographic method for the quantitation of lumefantrine using Youden’s test. Brazilian Journal of Pharmaceutical Sciences, 45(2), 235–240. Recovered from https://doi.org/10.1590/S1984-82502009000200007. doi: 10.1590/S1984-82502009000200007

Charny, J. W., Choi, J. K., & James, W. D. (2017). Spironolactone for the treatment of acne in women, a retrospective study of 110 patients. International Journal of Women’s Dermatology, 3(2), 111–115. Recovered from https://doi.org/10.1016/j.ijwd.2016.12.002. doi: 10.1016/j.ijwd.2016.12.002

Clayton, A. W., & Thiers, R. E. (1966). Direct spectrophotometric determination of salicylic acid, acetylsalicylic acid, salicylamide, caffeine, and phenacetin in tablets or powders. Journal of Pharmaceutical Sciences, 55(4), 404–407. Recovered from https://doi.org/10.1002/jps.2600550411. doi: 10.1002/jps.2600550411

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 1–17. Recovered from https://doi.org/10.3390/pharmaceutics10020057. doi: 10.3390/pharmaceutics10020057

El-Ragehy, N. A., Yehia, A. M., Hassan, N. Y., Tantawy, M. A., & Abdelkawy, M. (2016). Chemometrics tools in detection and quantitation of the main impurities present in aspirin/dipyridamole extended-release capsules. Journal of AOAC International, 99(4), 948–956. Recovered from https://doi.org/10.5740/jaoacint.16-0082. doi: 10.5740/jaoacint.16-0082

Enéas, P. C. R., Costa, A. L. O., Souza, D. E. R., Alvesa, J. C., Magalhães, M., Fialho, S. L., César, I. C., & Pianetti, G. A. (2020). Simultaneous quantitation of efavirenz, lamivudine and tenofovir disoproxil fumarate in fixed dose combination tablet by high performance liquid chromatography. Brazilian Journal of Health and Pharmacy, 2(4), 38–50. Recovered from https://doi.org/10.29327/226760.2.4-5. doi: 10.29327/226760.2.4-5

Falcão, D. Q., Mourão, S. C., Araujo, J. L. de, Pereira, P. A. K., Cardoso, A. C. A., Almeida, K. B. de, Zibetti, F. M., & Lima, B. G. (2015). CHALLENGES IN DEVELOPMENT OF ESSENTIAL OIL NANODELIVERY SYSTEMS AND FUTURE PROSPECTS. In J. Naik (Org.), Nano Based Drug Delivery (p. 557–578). IAPC Publishing. Recovered from https://doi.org/10.1016/B978-0-12-811037-9.00023-0. doi: 10.1016/B978-0-12-811037-9.00023-0

Food and Drug Administration. (1994). Reviewer Guidance - Validation of chromatographic methods. CDER. Center for Drug Evaluation and Research, 22(3), 1–30. Recovered from http://www.scopus.com/inward/record.url?eid=2-s2.0-0031924265&partnerID=tZOtx3y1

Food and Drug Administration. (2015). Analytical Procedures and Methods Validation for Drugs and Biologics Guidance for Industry Analytical Procedures and Methods Validation for Drugs and Biologics Guidance for Industry (Número July).

Ferreira-Nunes, R., Ferreira, L. A., Gratieri, T., Cunha-Filho, M., & Gelfuso, G. M. (2019). Stability-indicating analytical method of quantifying spironolactone and canrenone in dermatological formulations and iontophoretic skin permeation experiments. Biomedical Chromatography, 33(11), 1–10. Recovered from https://doi.org/10.1002/bmc.4656. doi: 10.1002/bmc.4656

Ferreira, C. P., Techera Antunes, F. T., Rebelo, I. N., da Silva, C. A., Vilanova, F. N., Corrêa, D. S., & de Souza, A. H. (2020). Application of the UV–vis spectrophotometry method for the determination of glutamate in the cerebrospinal fluid of rats. Journal of Pharmaceutical and Biomedical Analysis, 186. Recovered from https://doi.org/10.1016/j.jpba.2020.113290. doi: 10.1016/j.jpba.2020.113290

Garcês, A., Amaral, M. H., Sousa Lobo, J. M., & Silva, A. C. (2018). Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. European Journal of Pharmaceutical Sciences, 112(September 2017), 159–167. Recovered from https://doi.org/10.1016/j.ejps.2017.11.023. doi: 10.1016/j.ejps.2017.11.023

Ghate, V. M., Lewis, S. A., Prabhu, P., Dubey, A., & Patel, N. (2016). Nanostructured lipid carriers for the topical delivery of tretinoin. European Journal of Pharmaceutics and Biopharmaceutics, 108, 253–261. Recovered from https://doi.org/10.1016/j.ejpb.2016.07.026. doi: 10.1016/j.ejpb.2016.07.026

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. (2005). GESTÃO DO RISCO À QUALIDADE. Fase 4, 1–19. Recovered from https://www.gov.br/anvisa/pt-br/acessoainformacao/institucional/relacoes-internacionais/convergencia-regulatoria/arquivos/1558json-file-1

Kantikosum, K., Chongpison, Y., Chottawornsak, N., & Asawanonda, P. (2019). The efficacy of glycolic acid, salicylic acid, gluconolactone, and licochalcone a combined with 0.1% adapalene vs adapalene monotherapy in mild-to-moderate acne vulgaris: A double-blinded within-person comparative study. Clinical, Cosmetic and Investigational Dermatology, 12, 151–161. Recovered from https://doi.org/10.2147/CCID.S193730. doi:10.2147/CCID.S193730

Kitamura, K., & Majima, R. (1982). Determination of Salicylic Acid in Aspirin Powder by Second Derivative Ultraviolet Spectrometry. Analytical Chemistry, 55(1), 54–56. Recovered from https://doi.org/10.1021/ac00252a017. doi: 10.1021/ac00252a017

Kokot, Z., & Burda, K. (1998). Simultaneous determination of salicylic acid and acetylsalicylic acid in aspirin delayed-release tablet formulations by second-derivative UV spectrophotometry. Journal of Pharmaceutical and Biomedical Analysis, 18(4–5), 871–875. Recovered from https://doi.org/10.1016/S0731-7085(98)00225-8. doi: 10.1016/S0731-7085(98)00225-8

Krambeck, K., Santos, D., Otero-Espinar, F., Sousa Lobo, J. M., & Amaral, M. H. (2020). Lipid nanocarriers containing Passiflora edulis seeds oil intended for skin application. Colloids and Surfaces B: Biointerfaces, 193(May), 111057. Recovered from https://doi.org/10.1016/j.colsurfb.2020.111057. doi: 10.1016/j.colsurfb.2020.111057

Lammari, N., Louaer, O., Meniai, A. H., Fessi, H., & Elaissari, A. (2021). Plant oils: From chemical composition to encapsulated form use. International Journal of Pharmaceutics, 601, 1–34. Recovered from https://doi.org/10.1016/j.ijpharm.2021.120538. doi: 10.1016/j.ijpharm.2021.120538

Leandro, L. M., De Sousa Vargas, F., Barbosa, P. C. S., Neves, J. K. O., Da Silva, J. A., & Da Veiga-Junior, V. F. (2012). Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins. Molecules, 17(4), 3866–3889. Recovered from https://doi.org/10.3390/molecules17043866. doi: 10.3390/molecules17043866

Lu, J., Cong, T., Wen, X., Li, X., Du, D., He, G., & Jiang, X. (2019). Salicylic acid treats acne vulgaris by suppressing AMPK/SREBP1 pathway in sebocytes. Experimental Dermatology, 28(7), 786–794. Recovered from https://doi.org/10.1111/exd.13934. doi: 10.1111/exd.13934

Mu, H., & Holm, R. (2018). Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opinion on Drug Delivery, 15(8), 771–785. Recovered from https://doi.org/10.1080/17425247.2018.1504018. doi: 10.1080/17425247.2018.1504018

Nalini, C. N., & Kumar, V. (2020). A Review of Different Analytical Techniques for Fexofenadine Hydrochloride and Montelukast Sodium in Different Matrices. Critical Reviews in Analytical Chemistry, 51(3), 232–245. Recovered from https://doi.org/10.1080/10408347.2019.1709410. doi: 10.1080/10408347.2019.1709410

Patel, R., & Prabhu, P. (2020). Nanocarriers as versatile delivery systems for effective management of acne. International Journal of Pharmaceutics, 579, 119140. Recovered from https://doi.org/10.1016/j.ijpharm.2020.119140. doi: 10.1016/j.ijpharm.2020.119140

Ramos, T. R., Santoro, M. I. R. M., Kedor-Hackmann, E. R. M., & Singh, A. K. (2005). Validação de um método analítico para a determinação de substâncias ativas em formulaçõ es farmacêuticas empregadas em “peelings” químicos. Revista Brasileira de Ciencias Farmaceuticas/Brazilian Journal of Pharmaceutical Sciences, 41(2), 229–235. Recovered from https://doi.org/10.1590/s1516-93322005000200011. doi: 10.1590/s1516-93322005000200011

Saha, U., & Baksi, K. (1985). Spectrophotometric determination of salicylic acid in pharmaceutical formulations using copper(II) acetate as a colour developer. The Analyst, 110(6), 739–741. Recovered from https://doi.org/10.1039/an9851000739. doi: 10.1039/an9851000739

Souza, S. V. C., & Junqueira, R. G. (2005). A procedure to assess linearity by ordinary least squares method. Analytica Chimica Acta, 552(1–2), 25–35. Recovered from https://doi.org/10.1016/j.aca.2005.07.043. doi: 10.1016/j.aca.2005.07.043

Svetlichny, G., Kulkamp-Guerreiro, I. C., Cunha, S. L., Silva, F. E. K., Bueno, K., Pohlmann, A. R., Fuentefria, A. M., & Guterres, S. S. (2015). Solid lipid nanoparticles containing copaiba oil and allantoin: Development and role of nanoencapsulation on the antifungal activity. Pharmazie, 70(3), 155–164. Recovered from https://doi.org/10.1691/ph.2015.4116. doi: 10.1691/ph.2015.4116

Teixeira, F. B., Silva, R. D. B., Lameira, O. A., Webber, L. P., Souza, R., Couto, D. A., Martins, M. D., & Lima, R. R. (2017). Copaiba oil-resin ( Copaifera reticulata Ducke ) modulates the inflammation in a model of injury to rats ’ tongues. 1–8. Recovered from https://doi.org/10.1186/s12906-017-1820-2. doi: 10.1186/s12906-017-1820-2

Vieira, R., Severino, P., Nalone, L. A., Souto, S. B., Silva, A. M., Lucarini, M., Durazzo, A., Santini, A., & Souto, E. B. (2020). Sucupira Oil-Loaded Nanostructured Lipid Carriers (NLC): Lipid Screening, Factorial Design, Release Profile, and Cytotoxicity. Molecules, 25(3), 1–22. Recovered from https://doi.org/10.3390/molecules25030685. doi: 10.3390/molecules25030685

Youden, W. J., & Steiner, E. H. (1975). Statistical manual of AOAC. In Association of Official Analytical Chemistry.

Zheng, Y., Yin, S., Xia, Y., Chen, J., Ye, C., Zeng, Q., & Lai, W. (2018). Efficacy and safety of 2% supramolecular salicylic acid compared with 5% benzoyl peroxide/0.1% adapalene in the acne treatment: a randomized, split-face, open-label, single-center study. Cutaneous and Ocular Toxicology, 38(1), 48–54. Recovered from https://doi.org/10.1080/15569527.2018.1518329. doi: 10.1080/15569527.2018.1518329




How to Cite

ROCHA, B. de A. .; VIANA, M. C.; SILVEIRA, J. V. W. da; CARNEIRO, G. Low-cost method for quantification of salicylic acid loaded in lipid nanoparticles containing copaiba oil. Research, Society and Development, [S. l.], v. 11, n. 11, p. e274111133419, 2022. DOI: 10.33448/rsd-v11i11.33419. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33419. Acesso em: 28 sep. 2022.



Health Sciences