Use of bacteriophages as an alternative in the control of bacterial infections




Antibacterial activity; Phagotherapy; Bacteriophages; Bacterial resistance.


WHO predicts that, by 2050, infections caused by resistant bacteria will cause about 10 million deaths annually. Considered a public health crisis neglected worldwide, bacterial resistance (AMR) has been aggravated by the indiscriminate use of antimicrobials, which can be transmitted from one organism to another, favoring the emergence of pan-resistant bacteria. From this scenario, it is necessary to search for alternative treatment methodologies, such as phage therapy, which is based on the use of the natural replication mechanism of bacteriophages to cause bacterial cell lysis, which can be an excellent option for the treatment and control of infections caused by resistant bacteria. Therefore, this work aimed to highlight the potential of phage therapy in the fight against such infections, where this technique has shown positive and hopeful results in the fight against infections in several sites and by different routes of administration, even allowing the treatment of infections caused by biofilm-producing bacteria. It is, therefore, an extremely advantageous technique, using extremely specific viruses regarding the target microorganism, which ends up reducing the risks of toxicity, allergic reactions and dysbiosis. In addition, the combined use of bacteriophages and antibiotics presents synergistic results that allow the reduction of the antimicrobial loading dose and a greater effectiveness in the treatment. However, as phage therapy still does not have specific protocols for its use, further studies related to its implementation are needed, so that it is possible to enjoy this alternative treatment more in the future.


Ahmad, S. I. (2002). Treatment of post-burns bacterial infections by bacteriophages, specifically ubiquitous Pseudomonas spp. notoriously resistant to antibiotics. Medical hypotheses, 58 (4), 327-331.

Balfour, H. (2020). Skin inflammation in Netherton syndrome linked to Staphylococcal bacteria. Drug Target Review. Acesso em: 17 mar 2021.

Baptista, A. B. (2017). As bactérias multirresistentes hospitalares e as plantas medicinais. Revista Desafios, 4 (4), 1-2.

Berryhill, B. A. et al. Evaluating the potential efficacy and limitations of a phage for joint antibiotic and phage therapy of Staphylococcus aureus infections. Proceedings of the National Academy of Sciences, v. 118, n. 10, 2021.

Blair, J. M. et al. (2015). Molecular Mechanisms of Antibiotic Resistance. Nature, 13, 42-51.

Cano, E. J. et al. (2020). Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity. Clinical Infectious Diseases, 73 (1), e144-e151.

Chang, R.Y.K. et al. (2022). The effects of different doses of inhaled bacteriophage therapy for Pseudomonas aeruginosa pulmonary infections in mice. Clinical Microbiology and Infection, 28 (7), 983-989.

Cislo, M. et al. (1987). Bacteriophage treatment of suppurative skin infections. Archivum immunologiae et therapiae experimentalis, 35 (2), 175-183.

Costa, A. L. P. D. & Junior, A. C. S. S. (2017). Resistência bacteriana aos antibióticos e Saúde Pública: uma breve revisão de literatura. Estação Científica: (UNIFAP), 7 (2), 45-57.

D'herelle, F. (2007). On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D'Herelle, presented by Mr. Roux,. 1917. Research in microbiology, 158 (7), 553-554.

El-Shibiny, A. & El-Sahhar, S. (2017). Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria. Canadian journal of microbiology, 63 (11), 865-879.

Eskenazi, A. et al. (2022). Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nature Communications, 13 (1), 1-14.

Fabijan, A. P. et al. (2020). Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nature microbiology, 5 (3), 465-472.

Fadlallah, A., et al. (2015). Corneal infection therapy with topical bacteriophage administration. The open phthalmology journal, 9, 167-168.

Gallardo, M. J. M. (2019). Bacteriófagos en lugar de antibióticos. Milenaria, Ciencia y arte, 13, 6-8.

Gill, J. J. & Hyman, P. (2010). Phage choice, isolation, and preparation for phage therapy. Current pharmaceutical biotechnology, 11 (1), 2-14.

Górski, A. et al. (2006). Bacteriophage translocation. FEMS Immunology & Medical Microbiology, 46 (3), 313-319.

Górski, A. et al. (2018). Phage therapy: what have we learned?. Viruses, 10 (6), 288.

Hazbón, M. H. (2004). Recent advances in molecular methods for early diagnosis of tuberculosis and drug-resistant tuberculosis. Biomedica, 24, 149-162.

Hoyle, N. et al. (2018). Phage therapy against Achromobacter xylosoxidans lung infection in a patient with cystic fibrosis: a case report. Research in microbiology, 169 (9), 540-542.

Kutateladze, M. & Adamia, R. (2008). Phage therapy experience at the Eliava Institute. Medecine et maladies infectieuses, 38 (8), 426-430.

La Peña, M.M. (2020). Bacteriófagos, una herramienta prometedora contra las bacterias multirresistentes. [Trabalho de conclusão de curso, Faculdade de Ciências da Universidade de La Laguna].

Lebeaux, D. et al. (2021). A Case of Phage Therapy against Pandrug-Resistant Achromobacter xylosoxidans in a 12-Year-Old Lung-Transplanted Cystic Fibrosis Patient. Viruses, 13 (1), 60.

Little, J. S. et al. (2022). Bacteriophage treatment of disseminated cutaneous Mycobacterium chelonae infection. Nature communications, 13 (1), 1-7.

Loba, A.F.F.R. (2014). Fagoterapia como alternativa ao uso de antibióticos convencionais. [Dissertação de Mestrado em Ciências farmacêuticas, Faculdade de Ciências e Tecnologias da Saúde da Universidade Lusófona de Humanidades e Tecnologias].

Lu, T. K. & Collins, J. J. (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences, 106 (12), 4629-4634.

Merabishvili, M. et al. (2014). Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii. PloS one, 9 (8).

Mikeladze, C. et al. (1936). Sur le traitement de la fievre typhoide et des colites aigues par le bacteriophage de d’Herelle. La Médecine, 17, 33-38.

Morozova, V. V. et al. (2018). Bacteriophage treatment of infected diabetic foot ulcers. In: Bacteriophage Therapy. Humana Press, New York, NY, 151-158.

Morrisette, T. et al. (2020). Bacteriophage-antibiotic combinations for Enterococcus faecium with varying bacteriophage and daptomycin susceptibilities. Antimicrobial agents and chemotherapy, 64 (9).

Oms. (2019). Novo relatório pede ação urgente para evitar crise de resistência antimicrobiana.

Paisano, A. F. & Bombana, A. C. (2010). Fagoterapia como alternativa no combate às infecções endodônticas. Revista Gaúcha de Odontologia, 58 (2), 243-252.

Park, M. et al. (2012). Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both Salmonella enterica and Escherichia coli O157: H7. Applied and environmental microbiology, 78 (1), 58-69.

Peng, F. et al. (2014). Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates. BMC microbiology, 14 (1), 1-14.

Pereira, E. M. M. S. (2011). Aplicações da terapia com bacteriófagos como controle microbiológico. [Trabalho de conclusão de curso, Especialização em Microbiologia da Universidade Federal de Minas Gerais].

Pérez, K.A.B. (2020). Bacteriofagos como alternativa antimicrobiana y su aplicación en la medicina veterinaria y zootecnia. [Monografia, Faculdade de Medicina veterinária e zootecnia da Universidade de Cordoba].

Prada-Peñaranda, C. et al. (2015). Fagoterapia, alternativa para el control de las infecciones bacterianas. Perspectivas en Colombia. Universitas Scientiarum, 20 (1), 43-59.

Rhoads, D. D. et al. (2009). Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. Journal of wound care, 18 (6), 237-243.

Rincón, N. A. P. et al. (2019). Efecto de bacteriófagos en el control de biopelículas de Klebsiella pneumoniae productoras de Carbapenemasas (KPC). Universidad de los Andes.

Rizzo, N. N. (2017). Salmonella Gallinarum multirresistentes e formadoras de biofilmes em cascas de ovos são sensíveis a bacteriófagos. [Dissertação de Mestrado em Bioexperimentação, Faculdade de Agronomia e Medicina veterinária da Universidade de Passo fundo].

Rodrigues, C. S. et al. (2007). Use of bactec 460 TB system in the diagnosis of tuberculosis. Indian journal of medical microbiology, 25 (1), 32.

Rosa, J. E. C. (2015). Multirresistência bacteriana–uma “nova” terapêutica: Bacteriófagos. [Dissertação, Mestrado em Medicina da Universidade da Beira Interior].

Rothwell, D. D. T. (2014). Terapia bacteriofágica na prática clínica: um estudo de revisão. [Dissertação, Mestrado integrado em Medicina da Universidade de Porto].

Sakandelidze, V. M. & Meĭpariani, A. N. (1974). Use of combined phages in suppurative-inflammatory diseases. Zhurnal mikrobiologii, epidemiologii, i immunobiologii, 51 (6), 135-136.

Satta, G. et al. (2022). Advancing bacteriophages as a treatment of antibiotic-resistant bacterial pulmonary infections. Current Opinion in Pulmonary Medicine, 28(3), 225-231.

Schooley, R.T., et al. (2017). Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrobial agents and chemotherapy, 61 (10).

Silva, J. C. S. D. et al. (2020). A incidência do uso indiscriminado de medicamentos. Revista Brasileira Interdisciplinar de Saúde, 2 (1).

Stroj, L. et al. (1999). Successful treatment with bacteriophage in purulent cerebrospinal meningitis in a newborn. Neurologia i neurochirurgia polska, 33 (3), 693-698.

Tanji, Y. et al. (2005). Therapeutic use of phage cocktail for controlling Escherichia coli O157: H7 in gastrointestinal tract of mice. Journal of bioscience and bioengineering, 100 (3), 280-287.

Tkhilaishvili, T., et al. (2020a). Bacteriophages as Adjuvant to Antibiotics for the Treatment of Periprosthetic Joint Infection Caused by Multidrug-Resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 64 (1).

Tkhilaishvili, T., et al. (2020b). Using bacteriophages as a trojan horse to the killing of dual-species biofilm formed by Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus. Frontiers in microbiology, 11.

Torres-Barceló, C. & Hochberg, M. E. (2016). Evolutionary rationale for phages as complements of antibiotics. Trends in microbiology, 24 (4), 249-256.

Tortora, G. J., et al. (2017). Microbiologia-12ª Edição. Artmed Editora, 2017.

Traore, H. et al. (2007). Low-cost rapid detection of rifampicin resistant tuberculosis using bacteriophage in Kampala, Uganda. Annals of Clinical Microbiology and Antimicrobials, 6 (1), 1-6.

Wang, L. et al. (2020). Bacteriophage–antibiotic combinations against ciprofloxacin/ceftriaxone-resistant Escherichia coli in vitro and in an experimental Galleria mellonella model. International Journal of Antimicrobial Agents, 56 (6).

Wright, A. et al. (2009). A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic‐resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clinical otolaryngology, 34 (4), 349-357.

Wu, N. & Zhu, T. (2021). Potential of Therapeutic Bacteriophages in Nosocomial Infection Management. Frontiers in Microbiology, 12.

Yacoby, I., et al. (2007). Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrobial agents and chemotherapy, 51 (6), 2156-2163.

Zhvania, P., et al. (2017). Phage therapy in a 16-year-old boy with Netherton syndrome. Frontiers in medicine, 4, 94.



How to Cite

SILVA, L. O. P. da .; NOGUEIRA, J. M. da R. . Use of bacteriophages as an alternative in the control of bacterial infections. Research, Society and Development, [S. l.], v. 11, n. 11, p. e200111133619, 2022. DOI: 10.33448/rsd-v11i11.33619. Disponível em: Acesso em: 7 oct. 2022.



Review Article