Response of the tomato crop (Solanum lycopersicum L.) to the application of QuitoMax® in salinity conditions

Authors

DOI:

https://doi.org/10.33448/rsd-v11i12.33870

Keywords:

Amalia; Claudia; Bioestimulant; Electric conductivity.

Abstract

The effect of QuitoMax® on the behavior of tomato plants of the Claudia and Amalia varieties under saline stress conditions was studied. The experiment was carried out in the municipality of Cauto Cristo, province of Granma, from October/2017 to March/2018, in a soil classified as saline sodium (CE 4 dS m-1). The experimental design used was a random block design, with a factorial arrangement, replicating each variant four times. The biostimulant was applied 12 days after transplantation (DAT) at a rate of 300 and 400 mg ha-1 and the control (zero application). Plant height, root length, number of fruits, number of bunches per plant, equatorial diameter, polar diameter and yield were evaluated at 45 DAT. The application of the biostimulant QuitoMax® increases the number of clusters per plant and the mass of tomato fruits under salinity conditions compared to the control. Agricultural yields were increased by 43% and 76%, as well as economic benefits by $1,653.93 ha-1 and $3,418.08 ha-1 compared to the control, for cultivars Amalia and Claudia, respectively, grown under salinity conditions. The best results were obtained when applying the dose of 300 mg ha-1 of QuitoMax®.

References

Abellón-Molina, M. I., Posada-Dacosta, M. D. G., Torres-Calzado, K., García-Reyes, R. A., Villazón-Gómez, J. A., & Velázquez-Sánchez, E. C. (2021). Remote Sensing of Salinity in Agroecosystem of Mayarí, at Holguín Province, Cuba. Revista Ciencias Técnicas Agropecuarias, 30(1), 26-32.

Alam, M. S., Tester, M., Fiene, G., & Mousa, M. A. A. (2021). Early growth stage characterization and the biochemical responses for salinity stress in tomato. Plants, 10(4), 712.

Álvarez, M. (2002). “Amalia”. Variedades cubanas de tomate y su generalización en Cuba. Congreso del INCA (13:2002: La Habana).

Álvarez, M. (2008). Claudia, Mercy y Mayle, tres nuevas variedades de tomate para el consumo fresco. Cultivos tropicales, 29(1).

Amador, C. A., & Rodríguez, Y. R. (2012). El efecto económico de la salinidad en el cultivo del tomate en la provincia Granma. Observatorio de la Economía Latinoamericana, Nº 169.

Azcon-Bieto J., & Talon, M. (2008). Fundamentos de la fisiología vegetal. Ed. McGraw-Hill, Interamericana. 71(24), 875-880.

Bacha, H., Tekaya, M., Drine, S., Guasmi, F., Touil, L., Enneb, H., Triki, T., Cheour, F., & Ferchichi, A. (2017). Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. South Afr. J. Bot., 108, 364–369.

Bouzroud, S., Gouiaa, S., Hu, N., Bernadac, A., Mila, I., Bendaou, N., & Zouine, M. (2018). Auxin response factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PloS one, 13(2), e0193517.

Carvalho, T. S., & Lima, A. C. P. (2020). Mitigation of osmotic stress by Serratia nematodiphila in tomato seedlings. Research, Society and Development, [S. l.], 9(10), e6109108694.

Chele, K. H., Steenkamp, P., Piater, L. A., Dubery, I. A., Huyser, J., & Tugizimana, F. (2021). A global metabolic map defines the effects of a Si-based biostimulant on tomato plants under normal and saline conditions. Metabolites, 11(12), 820.

Dimas, N. R., Ríos, P. C., Viramontes, U. F., Chávez, E. F., Reséndez, A. M., Hernández, C. M., & Rangel, P. P. (2009). Uso de abonos orgánicos en la producción de tomate en invernadero. Terra latinoamericana, 27(4), 319-327.

FAOSTAT (2020). Disponible en https://www.fao.org/faostat/es/#compare.

Fisher, R. A. (1937). The Design of Experiments. Edinburgh, London: Oliver and Boyd.

González, L. M., Tóth, T., & García, D. (2004). Integrated management for the sustainable use of salt-affected soils in Cuba. Universidad y Ciencia. 20(40), 85-102.

Hernández-Jiménez, A., Pérez-Jiménez, J. M., Bosch-Infante, D., & Speck, N. C. (2019). La clasificación de suelos de Cuba: énfasis en la versión de 2015. Cultivos Tropicales, 40(1).

Jiménez, M. C., et al. (2015). Evaluación de la aplicación de quitosana sobre parámetros agronómicos del cultivo de tomate H-3108 (Solanum lycopersicum L.) en casas de cultivo. Centro Agrícola, 42(3), 83-90.

Kolmogorov, A. (1933). Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital. Attuari, Giorn., 4, 83-91.

Malerba, M., & Cerana, R. (2016). Chitosan Effects on Plant. Systems. Int. J. Mol. Sci., 996:1–15.

Molina, J., Colina, M., Rincón, D., & Vargas, J. (2017). Efecto del uso de quitosano en el mejoramiento del cultivo del arroz (Oryza sativa L. variedad sd20a). Revista de Investigación Agraria y Ambiental, 8(2), 45-60.

Morales, D., Dell Amico, J., Jerez, E., Díaz, Y., & Martín, R. (2016). Efecto del QuitoMax®® en el crecimiento y rendimiento del frijol (Phaseolus vulgaris L.). Cultivos Tropicales, 37, 142–144.

Morales, D., Torres, L., Jerez, E., Falcón, A., & Dell Amico, J. (2015). Efecto del QuitoMax® en el crecimien-to y rendimiento del cultivo de la papa (Solanum tuberosum L.). Cultivos Tropicales, 36, 133–143.

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

Munns, R., Day, D. A., Fricke, W., Watt, M., Arsova, B., Barkla, B. J., Bose, J., Byrt, C. S., Chen, Z., Foster, K. J., et al. (2019). Energy costs of salt tolerance in crop plants. New Phytol, 225, 1072–1090.

Pérez-Alfocea, F., Balibrea, M. E., Santacruz, A., & Estañ, M. T. (1996). Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant and Soil, 180, 251-257.

Pichyangkuraa, R., & Chadchawanb, S. (2015). Bio-stimulant activity of chitosan in horticulture. Sci. Horticul., 196, 49–65.

Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol., 37, 613–620.

Reyes-Pérez, J. J., Rivero-Herrada, M., García-Bustamante, E. L., Beltran-Morales, F. A., & Ruiz-Espinoza, F. H. (2020). Aplicación de quitosano incrementa la emergencia, crecimiento y rendimiento del cutivo de tomate (Solanum lycopersicum L.) en condiciones de invernadero. Biotecnia, 22(3), 156-163.

Ricardo, N., Polanco, A., Reyes, S., & Noris, P. (2013). Comportamiento del tizón temprano del tomate (Alternaria solani) en las condiciones del municipio de Holguín, Cuba. Fitosanidad, 17(2), 75-81.

Rodrigues, R. R., & et al. (2020). Tomato cultivation in a protected environment under different soil water tensions. Research, Society and Development, [S. l.], 9(11), e2289119777.

Rodríguez-Pedroso, A., Ramírez-Arrebato, M., Falcón-Rodríguez, A., Bautista-Baños, S., Ventura-Zapata, E., & Valle-Fernández, Y. (2017). Efecto del QuitoMax®® en el rendimiento y sus componentes del cultivar de arroz (Oryza sativa L.) var. INCA LP 5. Cultivos Tropicales, 38(4), 156-159.

StatSoft. (2014) Statistica 13.3. StatSoft Incorporation Version 13.3.

Tukey, J. W. (1960). A survey of sampling from contaminated distributions. In: Olkin, I., (ed). contribution to probability and statistics: essays in honor to Harold Hotelling. Redwood City: Stanford University Press. 448-485

Vázquez-Glaría, A., Eichler-Löbermann, B., Loiret, F. G., Ortega, E., & Kavka, M. (2021). Root-system architectures of two Cuban rice cultivars with salt stress at early development stages. Plants, 10(6), 1194.

Vinent, S. N., Ferrera, J. D., & Gutiérrez, J. C. (2016). Efecto de diferentes dosis de aplicación de Liplant en el cultivo de tomate (Solanum lycopersicum L.) var. Amalia bajo estrés salino. Investigación y Saberes, 5(3), 1-11.

Zádorová, T., Skála, J., Žížala, D., Vaněk, A., & Penížek, V. (2021). Harmonization of a large-scale national soil database with the World Reference Base for Soil Resources 2014. Geoderma, 384, 114819.

Published

05/09/2022

How to Cite

AMADOR, C. Ávila .; ALGENTEL-MARTÍNEZ, L. .; PEÑUELAS-RUBIO, O. .; GONZÁLEZ AGUILERA, J.; REYNA, I. F. . Response of the tomato crop (Solanum lycopersicum L.) to the application of QuitoMax® in salinity conditions. Research, Society and Development, [S. l.], v. 11, n. 12, p. e10111233870, 2022. DOI: 10.33448/rsd-v11i12.33870. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33870. Acesso em: 20 apr. 2024.

Issue

Section

Agrarian and Biological Sciences