Thermodynamic Properties Of Cajá Pulp (Spondias Mombin L.)
DOI:
https://doi.org/10.33448/rsd-v9i6.3396Keywords:
desorption; Gibbs free energy; enthalpy; entropy; water content.Abstract
Spondias mombin L. is a fruit native to Brazil, there is a variation of the native species in the Cerrado. Its fruits are used in the production of food for the manufacture of jams, ice cream and juices and the leaves are used in folk medicine to treat inflammatory diseases.The objective was to analyze the thermodynamic behavior and properties of powdered cashew pulp at different temperatures during the desorption process. The analysis was performed using the dynamic-gravimetric method. Cajá fruits with water activity between 16.96 and 57.43 were used for thermodynamic analysis. Desorption of the thin layer of the fruit was observed at different temperatures (10, 20, 30 and 40 ° C) and water activity levels, ranging from 0.17 to 0.57, until the product reached equilibrium moisture content in the specified air condition. The thermodynamic properties of the cajá pulp were affected by the temperature and humidity content. The isokinetic theory can be proven for the desorption process and this is controlled by enthalpy. The desorption of water in cajá fruits is a non-spontaneous process.
References
Araújo, W. D.; Goneli, A. L. D.; Corrêa, P. C.; Hartmann Filho, C. P & Martins, E. A. S. (2017). Modelagem matemática da secagem dos frutos de amendoim em camada delgada. Revista Ciência Agronômica, v. 48, n. 3, p. 448-457.
Ayala-Aponte & Alfredo A. (2016). Thermodynamic properties of moisture sorption in cassava flour.Dyna rev.fac.nac.minas [online]., 83, (197), pp.138-144.
Barbosa, K. F.; Sales, J. De. F.; Resende, O.; Oliveira, D. E. C. De.; Zuchi, J.; Sousa, K. A. de. 2016. Desorption isotherms and isosteric heat of ‘cajuzinho-do-cerrado’ achenes. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, (5), p. 481-486.
Beristain, C. I., Garcia, H. S., & Azuara, E. (1996). Enthalpy-entropy compensation in food vapor adsorption. Journal of Food Engineering, 30(3-4), 405- 415.
Brooker, D. B.; Bakker-Arkema, F. W.; Hall, C. W. (1992). Drying and storage of grains and oilseeds. Westport, CT: The Avi Publishing Company.
Cagnin, C.; Lima, M. S. De.; Silva, R. M. Da.; Silva, M. A. P. Da.; Plácido, G. R.; Oliveira, D. E. C. de. 2017. Garlic: kinetic drying and thermodynamic properties. Bioscience Journal, v. 33, n. 4, p. 905 – 913.
Corrêa, P. C., Christ, D., Martins, J. H., & Mantovani, B. H. M. (1998). Curvas de dessorção e calor latente de vaporização para as sementes de milho pipoca (Zea mays) [Desorption curves and latent heat of vaporization for popcorn seeds (Zea mays)]. Revista Brasileira de Engenharia Agrícola e Ambiental, 2(1), 7-11.
Corrêa, P. C., Oliveira, G. H. H., Botelho, F. M., Goneli, A. L. D., & Carvalho, F. M. (2010). Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem [Mathematical modeling and determination of thermodynamic properties of coffee (Coffea arabica L.) during the drying process]. Revista Ceres, 57(5), 595-601.
Goneli, A. L. D., Corrêa, P. C., Oliveira, G. H. H., Gomes, C. F., & Botelho, F. M. (2010a). Water sorption isotherms and thermodynamic properties of pearl millet grain. International Journal of Food Science and Technology, 45(4), 282-383.
Goneli, A. L. D.; Corrêa, P. C.; Oliveira, G. H. H.; Afonso Júnior, P. C. 2013. Water sorption properties of coffee fruits, pulped and green coffee. LWT – Food Science and Technology, v. 50, p. 386-391.
Krug, R. R., Hunter, W. G., & Grieger, R. A. (1976). Enthalpy-entropy compensation: 1 - some fundamental statistical problems associated with the analysis of Van’t Hoff and Arrhenius data. Journal of Physical Chemistry, 80(21), 2335-2341.
Leffler, J. E. (1955). The enthalpyeentropy relationship and its implications for organic chemistry. The Journal of Organic Chemistry, 20, 1202-1231.
Liu, L., & Guo, Q.-X. (2001). Isokinetic relationship, isoequilibrium relationship, and enthalpyeentropy compensation. Chemical Reviews, 101, 673-695.
Mattietto, R. A.; Matta, V. M. 2011. Cajá (Spondias mombin L). Yahia, em Postharvest Biology and Technology of Tropical and Subtropical Fruits. Cambridge: Woodhead Publishing, v.2, p.330-353.
Oliveira, D. E. C. De.; Resende, O.; Costa, L. M.; Silva, H. W. da. 2017. Thermodymnamic properties of crambe fruits. Acta Scientiarum Agronomy, 39, (3), p. 291-298.
Oliveira, D. E. C., Resende, O., Chaves, T. H., Sousa, K. A., & Smaniotto, T. A. S. 2014b. Propriedades termodinâmicas das sementes de pinhão-manso [Thermodynamic properties of seeds jatropha]. Bioscience Journal, 30(3), 147-157.
Oliveira, D. E. C., Resende, O., Smaniotto, T. A. S., Sousa, K. A., & Campos, R. C. 2013. Propriedades termodinâmicas de grãos de milho para diferentes teores de água de equilíbrio [Thermodynamic properties of maize grains for different equilibrium moisture contents]. Pesquisa Agropecuária Tropical, 43(1), 50-56.
Oliveira, G. H. H., Corrêa, P. C., Santos, E. S., Treto, P. C., & Diniz, M. D. M. S. 2011. Evaluation of thermodynamic properties using GAB model to describe the desorption process of cocoa beans. International Journal of Food Science & Technology, 46(10), 2077-2084.
Prette, A. P.; Almeida, F. De. A. C.; Villa-Vélez, H. A.; Telis-Romero, J. 2013. Thermodynamic properties of water sorption of jackfruit (Artocarpus heterophyllus Lam.) as a function of moisture contente. Food Science and Technology, v. 33, n. 1, p. 199-208.
Resende, Osvaldo; Oliveira, Daniel E. C. De; Costa, Lílian M. And Ferreira Junior, Weder N. 2017. Thermodynamic properties of baru fruits (Dipteryx alata Vogel). Eng. Agríc,.37, (4), pp.739-749.
Teixeira, L. P.; Andrade, E. T. De.; Silva, P. G. L. Da. 2012. Determinação do equilíbrio higroscópico e do calor isostérico da polpa e da casca do abacaxi (Ananas Comosus). Engevista, v. 14, n. 2, p. 172 – 184.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.